
Quantum computations (course of lectures)

Yuri I. Ozhigov

Moscow State University of M.V.Lomonosov, Faculty of Computational
Mathematics and Cybernetics, Moscow center of fundamental and applied
mathematics, Institute of physics and technology of K.A.Valiev (RAS),

e-mail: ozhigov@cs.msu.ru

1



Key words: Quantum computer, quantum algorithm, decoherence, quantum model-
ing, quantum non locality

Annotation

This course of lectures has been taught for several years at the Lomonosov Moscow
State University; its modi�ed version in 2021 is read in the Zhejiang University (Hangzhou),
in the framework of summer school on quantum computing. The course is devoted to a
new type of computations based on quantum mechanics. Quantum computations are
fundamentally di�erent from classical ones in that they occur in the space of so-called
quantum states, and not in ordinary binary strings. The physical implementation of
quantum computing - a device called a quantum computer has already been partially
created, and its technology continues to develop intensively. Quantum computing is a
real process in which the mathematical description is inextricably linked with quantum
physics. In particular, the quantum mechanics of complex systems, the model of which
is a quantum computer, is currently only being created, so quantum computing is a fun-
damental direction to a greater extent than an applied one. Therefore, in the course - in
general, mathematical, much attention is paid to the physical implementation of this new
type of computations. Various forms of quantum computing are considered: the Feynman
gate model, fermionic and adiabatic computations. A class of problems is described in
which quantum computing is not only more e�cient than classical ones, but also cannot
be replaced by them. These are the most important tasks of describing complex processes
at the predictive level. In particular, using the phenomenon of quantum nonlocality, dis-
covered at the end of the 20th century. Estimates of the ultimate possibility of quantum
computing are also given - lower estimates of quantum complexity. The course is de-
signed for students of physics and mathematics and natural science specialties as well as
all those interested in this subject. It requires familiarity with the basics of linear algebra
and mathematical analysis in the �rst two courses of the university.
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Introduction

Natural science studies the patterns that real-world scenarios obey. Where there are
no laws, chaos reigns. Classical mechanics was born out of the chaos of the medieval
description of the world, but it came across the chaos of the microcosm at the beginning of
the 20th century, from which quantum mechanics emerged, which gave us microelectronics
and IT technologies. Further progress is associated with complex scenarios, primarily
biological ones. Their description is currently dominated by the ideas of classical physics,
and chaos also reigns for the time being. The geometric growth of biological databases
such as Protein Data Bank and the demand for increasingly powerful computers for only
external, shallow processing of accumulated information has not been accompanied by
visible progress either in medicine or in fundamental biology, since the discovery of the
DNA double helix in 1953. Restoring order in the chaotic �eld that modern biology
represents requires the introduction of an accurate theory of the microcosm, that is,
quantum methods. A quantum computer serves this purpose.

The path to building a complete theory of the microcosm, including complex systems
and processes, is very di�cult and we are still, in fact, at its beginning (look at the Figure
1).

However, all the steps taken since 1982, when the idea of a quantum computer was
�rst made public, were steps in the right direction. In this course, we will follow these
steps from a mathematical point of view.

Quantum computing is the mathematical support of a quantum computer. To under-
stand the place of this subject, we must give an idea of the quantum computer itself and
the need to create it.

The physics of a quantum computer is essentially the quantum physics of complex sys-
tems, which di�ers from the quantum theory of simple systems, the so-called Copenhagen
theory. The di�erence is in the new, more stringent restrictions on the mathematical
apparatus of in�nitesimals, and also in the fact that for complex systems computations
play a very special role, which was not in the old, Copenhagen theory. The name of this
project originated in the distant times of the late 20th century, when we imagined its
�nal product as a kind of computing machine standing on a desktop, or in a laboratory,
and capable of calculating some things faster than classical supercomputers (Grover 3 fast
quantum search).

The last 30 years have shown the naivety of such an idea. In reality, we do not want
to calculate something abstract, we want to manage complex natural processes that are
necessary for our survival. And this control should be carried out at the quantum level,
because the course of a complex process is determined in the microcosm, where the laws
of quantum physics prevail.

The computations themselves are needed only to control the life. To do this, you need
to know well what this or that move in control will lead to, that is, you need to be able to
predict the behavior of a controlled system (a nanodevice, a living cell or an organism),
and do it in real time, that is, faster than the controlled system itself responds to our
control. This is the role that a quantum computer should play, no matter how it looks.

The �rst step towards the creation of this device has already been taken by our prede-
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Figure 1: Quantum mechanics and complex processes
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Figure 2: Andrei Markov - junior. Founder of constructive mathematics

cessors - the founders of quantum mechanics. This grandiose step in the knowledge of the
world led to the appearance of computers as such. Of course, it is possible to count the
history of computations from mechanical arithmometers of the time of Boole; historically,
this has grounds, but still a computer is a microelectronic device - a set of microcircuits
based on silicon-germanium heterostructures. And the principle of operation of such de-
vices is based on the quantum representation of the state of electrons in a solid, that is,
on quantum mechanics.

All modern microelectronics is an achievement of quantum theory. And here it is used
to control huge ensembles of identical particles - bosons, like photons, or fermions, like
electrons. The methods of mathematical analysis work very well for such ensembles, which
is the reason for the success at this stage, which covers almost the entire 20th century.
We are able to manage such microelectronic systems well.

Today, we need to learn how to manage more complex systems of biological nature.
Here we are talking about many atoms that have an individuality. Individual DNA links
can no longer be combined into ensembles of identical particles, like helium-4 atoms in a
liquid state, or like electrons in a semi-conducting layer of a heterostructure. This stage is
designated by the term "quantum computer", and we have yet to pass it. We are talking
here about the management of living things, which radically distinguishes the tasks of the
present time from past epochs. The role of analytical methods of the past today passes
to computers, and the ideology of Computer Science becomes the main one in the physics
of complex processes. Consequently, quantum computing becomes a mathematical form
of controlling these processes.

A quantum computer is a method of penetrating into the depths of the microcosm, into
the area where quantum theory itself must be transformed and adapted to the enormous
complexity of living matter. The project of its creation is extensive and diverse, it is
impossible to cover it in one lecture course.The role of analytical methods of the past is
now being transferred to computers, and the ideology of Computer Science is becoming
the main one in the physics of complex processes. Consequently, quantum computing
becomes a mathematical form of controlling these processes.

This lecture course presents only one side of it - mathematical, and from the biased
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point of view of the author, who himself deals with this topic. The listener can �nd a
description of other aspects of this project in the constantly growing literature and by
referring to the archive http:arxiv.org, the quant-ph section. The mathematical side of
a quantum computer is very important, since here the analytical apparatus familiar to
physicists of the 20th century is not quite adequate to reality. This was clearly demon-
strated in the 90s by the example of the so-called fast quantum algorithms, the main
examples of which we will consider in detail.

The development of the quantum computer project can have a serious impact on
the development of natural science in the coming decades, so many works on it are not
published, and their results are immediately used in the �eld of information technology.
This applies to quantum cryptography-the part of the project that operates with one
or two qubits or with precision quantum devices; both of these areas are widely used in
practice. Here we will touch on these areas only very brie�y. Our subject will be quantum
computing and its connection with the most important general scienti�c tasks.

There are excellent physical monographs on this subject, starting with the canonical
book by Lev Landau and Yevgeny Lifshitz [1] and many other equally excellent books.
However, quantum computing dictates a slightly di�erent, more formal and concise style
of presentation based on linear algebra. This approach allows you to quickly master the
formal language in which quantum computing processes will be described. This will allow
us to formulate an abstract Feynman model of a quantum computer-with a user interface
in the form of quantum gates (see [5]; the �rst detailed de�nition can be found in [6]),
and move on to quantum algorithms.

We will describe in more of less details three such algorithms that solve mathematical
problems: the Grover algorithm, the fast quantum Fourier transform and - brie�y - the
associated Shor integer factorization algorithm, as well as the Zalka - Wiesner algorithm.
The �rst two illustrate the property of fast concentration of the amplitude on the target
state, which allows us to achieve the so-called quantum speedup of classical computations.
Here we will also discuss computations with an external object - an oracle, and its quantum
form. Attention will also be paid to the lower bounds of quantum complexity - the
limiting capabilities of quantum computing. The third algorithm is designed for predictive
modeling of the real evolution of a complex system at the quantum level. The choice of
these algorithms is dictated by the fact that they fully reveal the essence of quantum
computing and their possible applications in the �eld of mathematical problems.

In the �rst two lectures, a brief introduction to quantum mechanics is given, which
is necessary for understanding further. We will also touch on quantum algorithms for
distributed computing, the advantage of which is the use of quantum nonlocality. The
scheme of fermionic quantum computing and its control will be analyzed. We will talk
about quantum teleportation - on the example of one qubit. Quite brie�y, we will touch
on quantum cryptography - the BB84 protocol.

One lecture will be devoted to adiabatic quantum computing, which clari�es the special
status of the most important equation of quantum physics - Schrodinger equation.

Attention will also be paid to the physical implementation of the Feynman model
of quantum computing - quantum gates. We will analyze a speci�c gate technology
- on optical cavities, which is based on �nite - dimensional models of QED -quantum
electrodynamics.
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Figure 3: Lov Grover, author of quantum search

Finally, we will consider the role of quantum computing in determining the limits of
applicability of the quantum theory itself, as well as the possible scheme of a quantum
operating system. Quantum algorithms and computations use this operating system as
a technical basis, but its limitations directly a�ect the algorithms themselves. Quantum
computing thus becomes an experimental platform for determining the form of quantum
laws in the �eld of complex processes.

In conclusion, we will observe main results and possible ways of developing quantum
computing and its applications.
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1 Lecture 1. Quantum Mechanics and modeling of Na-

ture

Everything true is simple and clear, and where there is fog, there is always

some kind of mud

Lev Landau

Modeling of natural processes is the main task of physics. If until the �rst half of the
20th century modeling was reduced mainly to algebraic calculations, which were directly
compared with the experiment, then at the end of the 20th century a computer stood out
as the main device of theoretical physics, into which you can download all the analytical
calculations and, moreover, it can go much further than these calculations, presenting us
with reality in the form of the result of its work - as a computation.

Let's agree about the basic terminology. Suppose we have a certain device called a
computer, which can be in a certain set of states, the set of which we will denote by C.
Algorithm we will call the mapping F of this set to itself:

F : C → C.

The algorithm is set in the form of a certain rule that allows you to get another state
of the computer according to a given state. This rule is practically most often made out
in the form of a computer program, or in the form of a recipe formulated in ordinary
human language "we need to do this and that".

In the classical theory of algorithms, the set of computer states C is simply a set of all
possible Boolean strings of the form a0, a1, ..., an−1, where n is the size of the computer's
memory, aj ∈ {0, 1}.

The computation corresponding to this algorithm is the sequence of applying the map-
ping F to the initial state C0:

C0 −→ F(C0) −→ F(F(C0)) −→ . . . −→ F(. . .F︸ ︷︷ ︸
T

(C0) . . .) = F{T}(C0), (1)

where the rule F is no longer applicable to the �nal state. The number T (C0) is called
the complexity of the algorithm's work on a given initial word C0; if T = ∞, then the
complexity is in�nite, that is, the algorithm never terminates. So such de�ned complexity
is actually the running time, expressed in abstract units - the number of applications of
this operator.

The operator F may depend on the time that we de�ned above. In order for this
situation not to di�er from the standard model with the constant operator F , it is neces-
sary to include time in the states themselves C ∈ C. This technique is used in quantum
electrodynamics. However, from a practical point of view, the variable operator F is a
case that requires special approaches - this will be discussed in a lecture on adiabatic
computations. In the future, by default, the F operator will not depend on time.

11



Figure 4: Simulation of a real process on a quantum computer

12



Figure 5: The scheme of a quantum computer
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We understand a computation in the broad sense of the word: any real process is
presented to us in the form of some computation. Therefore

an algorithm is any law of nature that we can formulate in
precise terms.

This algorithmic concept, constructive mathematics, was created by Andrey Markov
Jr. (see [2],[3]) and is the basis for applying computers to modeling real processes.

Any quantum algorithm is ultimately an algorithm that simulates some real process
(see Figure 4); and if the computation corresponding to this algorithm does not give the
desired result, we must conclude that this algorithm is incorrect. Quantum algorithms are
just classical records of elementary quantum operations that lead to the desired result,
provided that we correctly understand the operation of the laws of quantum physics itself
in relation to the quantum part of our computer. It is impossible to directly verify the
fact of such knowledge - it can only be veri�ed by experiment.

This leads to the unexpected conclusion that the construction of a quantum computer
is a test of the quantum theory itself in a �eld where it has never been tested before - in
complex systems. In the problems of physics of the 20th century, we were dealing with
simple systems, complexity did not play a special role there, since these problems could
be reduced by eliminating the so-called entanglement. For complex systems that are the
focus of science today, this cannot be done.

Increasing the number of qubits leads to an exponentially rapid increase in complexity;
with qubit memory, we very quickly go beyond simple systems that were easily analyzed
by physicists of the past century. Therefore, quantum computing is the physics of modern
times, and our ideas about it still need to be tested experimentally. We will follow the
standard path of the Copenhagen quantum theory, which has been perfectly tested for
simple problems, and see where it leads us to complex problems.

Let us somehow determine the complexity C(C) of the computer state C. Let's take
the maximum complexity of the algorithm beginning with every initial state of complexity
no greater than a given natural n :

C(F)(n) = maxC(C0)≤nT (C0)

then we get a function of the natural argument, called the complexity of the algorithm
F .

For computations, an external device is often used, which is called an oracle. An oracle
is an object that is much more complex than a computer; it can hardly even be called an
object, it is rather a subject that cannot be described in terms of algorithms at all. For
example, an oracle can be a computer user.

Formally, the oracle is this other function of the form

O : C → C

Let there be a subset Q ⊆ C in the set of computer states C, whose states are called
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query states. Pair (O,F) is called an algorithm with an oracle. The computation corre-
sponding to a given algorithm with an oracle is a sequence of the form

C0 −→ L(C0) −→ L(L(C0)) −→ . . . −→ L(. . .L︸ ︷︷ ︸
T

(C0) . . .) = F{L}(C0), (2)

where the mapping L acts as F if its argument does not belong to Q, and as O if
its argument belongs to Q. Here, as above, the mapping L is not applicable to the �nal
state of the computer. Such a calculation works as F until a query state is encountered.
If such a state occurs, the oracle O is used instead of the usual function F .

After a little thought, we will come to the conclusion that the user's interaction with
the computer exactly �ts into the computation scheme with the oracle, if the latter des-
ignates the user.

Oracle = computer user

The complexity of the computation with an oracle is the number of applications of
the oracle in the chain (2); the complexity of the algorithm with an oracle is determined
in the same way as above.

The computation (1) is an abstract model of any natural process that is described
by the law F , that is, any real process. The form of the computation depends on the
form of the description of the states of the system under consideration. For example,
in classical physics, states from the set C are binary strings of length n, which total
number is N = 2n. Note that the application of mathematical analysis requires a limit
transition of n → ∞. However, this requirement of Cartesian mathematics does not
exactly correspond to the real world. For example, if we are talking about the air in a
given room, we cannot, strictly speaking, consider it continuous: it consists of molecules
of �nite size. In a computer computation, any representation will be �nite, since the
computer's memory is always limited. This circumstance means that computer modeling
is able to more adequately re�ect real physical processes in comparison with analytical
formulas.

Is it possible to speed up evolution if you expand the computer's memory? Is it possible
to buy time by paying for it with space? You can't! Evolution, in general, cannot be
accelerated by involving new resources. Only a narrow range of tasks, called search (or
brute force) problems, is parallelized. A quantum computer will not be able to speed up
the execution of all tasks as well.

Theorem ([4]).

The probability that an iteration of the length O(N1/7) arbitrarily selected from the
uniform distribution of the "black boxes" F can be spedup by at least one on a quantum
computer tends to zero with the dimension of the space tending to in�nity.

The meaning of this theorem is that the proportion of problems that allow quantum
speedup by at least one is vanishingly small among all possible problems.
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In other words:

Quantum speedup is a rare phenomenon that occurs only for problems of
the brute force type

This brings quantum parallelism closer to classical parallelism. The advantage of a
quantum computer consists in a) the potential possibility of solving iterative problems
faster than on a classical computer, and b) in a much more adequate modeling of real
processes.

The advantage of point a) is not absolute, since we do not know the physical limitations
on the use of the Copenhagen quantum theory in complex systems. The advantage of
point b) has huge prospects. In particular, we can use the phenomenon of quantum
nonlocality to improve the quality of some computations.

1.1 Quantum representation of states

The description of states in the form of binary strings corresponds to classical physics
- this is a description through classical algorithms.

For relatively simple processes, the classical computational model (1) is quite ade-
quate. However, this is not the case for complex processes. The fact is that the binary
representation of states in the form of binary strings itself is inadequate to reality in the
case when very small errors in determining the state are essential. This happens in states
of unstable equilibrium, when for accurate modeling we must consider very small segments
of time dt and space dx, that is, the microcosm. Here, the value of the elementary action
dS (the energy element multiplied by the time element), which is used in modeling, is
important: if dS � ~ ≈ 3 · 10−27 erg · sec, the classical description of the dynamics
is adequate, if dS becomes comparable to the Planck constant ~, the description from
classical physics becomes inadequate, and it should be replaced by a quantum one.

The main feature of the quantum description of reality is multiplicity. With a quantum
description, any object can be in several classical states at once. The quantum state is
a vector that changes according to the matrix rule: at the next moment in time, it is
multiplied by the evolution matrix. The vector itself has a probabilistic meaning. This
means that the quantum description does not refer to one single object, but to a whole
huge series of equally prepared objects; only having such a series, we can collect statistics
in order to compare theory and experiment.

In the quantum representation of nature, any state from the set C is a linear combi-
nation (superposition) of binary strings of length N .

Let C0, C1, ..., CN−1 be the classical states of some system, by which we will always
understand the computer's RAM. Then the quantum state of this system will have the
form

|Ψ〉 =

j=N−1∑
j=0

λj|Cj〉 (3)
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where the complex numbers λj are called amplitudes of the states Cj. This means that
the quantum RAM can be simultaneously in all possible classical states, but in each such
state |Cj〉 - with its own amplitude λj. This is the essence of quantum parallelism and
the possibility of quantum spedup of solving iterative problems compared to a classical
computer.

For example, if a classical computer has RAM consisting of n bits, then the quantum
analogue of such a computer will have memory consisting of n quantum bits (qubits).

In addition to RAM, any computer has a long-term memory. It is in the long-term
memory that the description of the algorithm F is stored, which does not change when
this mapping is applied, like the genetic code in a living cell. Thus, the algorithm can only
change the RAM, but not the long-term memory. In the case of a classical computer, these
types of memory have an identical mathematical description in the form of binary strings.
In a quantum computer, the situation is di�erent. Here, the long - term memory is also a
binary string designed for storing the algorithm record, but the operational memory will
be in the so-called quantum state, which we also call the vector state. In the future, by
memory, we mean, by default, RAM.

The state of the computer is a pair: the state of RAM and long-term memory. For
example, the state that determines the end of the algorithm, or the query transformation
is always determined in the long-term memory of the computer. Here we restrict the
traditional theory of algorithms that allow for "unpredictable" behavior of computations.
In the theory of quantum computing, their end is always predictable; "unpredictable" is
the �nal state of quantum memory.

Let the classical state of the computer's RAM have the form of a binary string
a0, a1, ..., an−1. We will represent such a string as a natural number

a = a0 + 2a1 + ...+ 2n−1an−1

lying in the set {0, 1, ..., N−1}, where N = 2n, and this representation will be one-to-one.
Then the quantum state of this memory will have the form

|Ψ〉 =
N−1∑
j=0

λj |j〉 =


λ0

λ1
...

λN−1

 ; |0〉 =


1
0
...
0

 , |1〉 =


0
1
...
0

 , ..., |N−1〉 =


0
0
...
1

 . (4)

So, |Ψ〉 is a column vector belonging to the space CN , and all the components of |j〉
also have column vectors, each of which has all zeros, except for the j element, which is
equal to one. Thus, (4) is a decomposition of an arbitrary vector in an N - dimensional
complex space on the basis of |j〉.

The symbols | - bra, and 〉 - ket, were introduced by Dirac; they are very convenient
and we will always use them.

A scalar product is de�ned in this space, so that the vectors |j〉 form an orthonormal
basis in it. The vectors |Ψ〉 can be added and multiplied by any number - in this case,
new quantum memory states will be obtained, which, like |j〉, are physically realizable
quantum states.
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We will introduce an object of the form 〈Ψ| as the result of the conjugation of the
vector |Ψ〉, that is, a vector is a string consisting of complex conjugate elements. Then
the matrix product of the form 〈Ψ| · |Φ〉, which we will brie�y write as 〈Ψ|Φ〉, will be the
scalar product of the vectors |Ψ〉 and |Φ〉. Thus, we can write the normalization condition
for one in the form 〈Ψ|Ψ〉 = 1. In order to normalize any vector-state |Ψ〉, you need to
divide it by its own norm: 1√

〈Ψ|Ψ〉
|Ψ〉. The length of such a normalized vector will be

unit.

It is convenient to write matrices in Dirac notation. For example, the matrix product
of a column by a row of the form |i〉〈j| is a matrix in which one stands in the place of
(i, j), and in other places there are zeros. Then any matrix A = (ai,j) can be represented
as an expansion

A =
∑
i,j

ai,j|i〉〈j|

and the conjugate matrix - the result of transposition and complex conjugation of ele-
ments, denoted by A∗ or A+, will have the form A+ =

∑
i,j

āi,j|j〉〈i| =
∑
i,j

āj,i|i〉〈j|.

Let the state |Ψ〉 of the form (4) be normalized (by one). Then its measurement is
called a random variable that takes the values |j〉 with probabilities pj = |λj|2. The total
probability will be equal to one due to the normalization of this state.

The unitary operator CN → CN is a linear operator that preserves the length of any
vector. This is equivalent to the fact that it translates one orthonormal basis into another
orthonormal basis.

In the space CN , you can consider bases other than |j〉. This is done by applying some
kind of unitary transformation of U : |j̃〉 = U |j〉. Then we can generalize the concept
of measurement to a new basis |j̃〉. Namely, we call the measurement of a system in the
state |Ψ〉 in the basis |j̃〉 a random variable taking the values |j̃〉 with the probability
p̃j = |〈j̃|Ψ〉|2.
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Figure 6: The coordinate-momentum uncertainty ratio for one qubit. If the coordinate is
precisely de�ned, the momentum is completely indeterminate, and vice versa .

The linear operator H : CN → CN is called Hermitian (or self-adjoint) if H = H+.
From linear algebra, it is known that for any unitary operator U there is such a Hermitian
operator H that U = exp(iH), where the matrix exponent is de�ned, as well as the

numeric one, through the series exp(A) =
∞∑
n=0

An/n!. The opposite is also true, for any

Hermitian operator H, the operator eiH is unitary.

It is also known that for any unitary or Hermitian operator there is its system of
eigenvectors, which is an orthonormal basis of the entire state space. This allows us to
introduce the concept of observation, which is related to the concept of measurement.
We will call the Hermite operator H observable if the basis of the space CN is allocated,
consisting of the eigenvectors |φj〉 of the operator H with the eigenvalues aj: H|φj〉 =
aj|φj〉. Observation of a system in the state |Ψ〉 corresponding to observableH is a random
variable taking the values aj with probabilities Pj = |〈φj|Ψ〉|2.

So, measurement and observation are almost the same thing, the only di�erence is
that when measuring, the result will be the eigenstates of some Hermitian operator - the
basis |j̃〉 can be considered exactly as such states, and when observing, the result will be
eigenvalues corresponding to these states. If the measurement is carried out by a device
called a meter, but the observation is carried out by an observer.

Measurement is a physical process during which the state |Ψ〉 of the form (4) turns into
one of the states |j〉, j = 0, 1, ..., N−1. In this case, all information about the amplitudes
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of λj is lost. This process occurs when the system in question comes into contact with
a special device called a meter, or an observer. In quantum mechanics, there is no exact
de�nition of which object can be a meter. However, the term "observer" can mean that
such a device can be a subject of any nature, for example, a person. We will not go into
this question deeply yet, assuming that a computer user can always initiate a computer
memory measurement at will.

Measurement or observation is the only way to learn anything about the quantum
state |Ψ〉 in which this system is located. Quantum mechanics, therefore, describes only
probabilities, but not classical states. A paradoxical conclusion follows from this. One
single system, generally speaking, does not have any quantum state! The quantum state
is a characteristic of not one object, but a huge number of equally prepared objects.

For example, let's consider an electron in a hydrogen atom and wonder where it is
located there. You can measure its coordinate by irradiating an atom with hard radiation
- a photon of very high frequency. This photon, after interacting with an electron, will �y
out of the atom and we will be able to �x it, after which it will be possible to approximate
where the electron was located. But as a result of the interaction, the electron will
receive such an impulse that it will �y out of the atom completely! And for the next
experiment, we will have to take another atom already - the previous one has completely
lost its initial state. Thus, in order to talk about the "quantum state of an electron in
a hydrogen atom", we need to have a huge number of equally prepared hydrogen atoms,
which nature provides us with. If we had only one unique hydrogen atom, we would not
be able to say anything about the vector state of the electron inside it.

Quantum theory does not deal with individual particles or individual systems of par-
ticles. It deals only with ensembles of independently and equally prepared systems or
particles. The vector state characterizes not a separate system of atoms representing the
memory of a quantum computer in a given experiment, but the result of a huge number of
identical experiments. Quantum computing, therefore, is a probabilistic computation of a
special kind. They are radically di�erent from classical probabilistic computations based
on classical physics. Quantum computations completely model the quantum dynamics
of real complex systems, which is why they apply for not only to describe, but also to
control complex processes .

In the course of quantum computing, we must come to a state of the form |j〉 - to a
basic state, the measurement of which invariably gives the same result. This is the art of
quantum computing.

1.2 Unitary evolution

What happens to the memory of a quantum computer when it is left to itself, and no
one measures it? Then its vector-state satis�es the Schrodinger equation, which has the
form

i~|Ψ̇〉 = H|Ψ〉 (5)

where H is the Hermitian operator, called the energy operator of the system or is the
Hamiltonian, ~ ≈ 3 · 10−27 erg · sec is the Planck constant. If the initial vector state is
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set to |Ψ(0)〉, then the solution of the Schrodinger equation will have the form

|Ψ(t)〉 = exp(− i
~
Ht)|Ψ(0)〉 (6)

The formula (6) expresses the fact that the trajectory of a quantum system is the
orbit of a unitary evolution operator Ut = exp(− i

~Ht) acting on the entire state space,
in contrast to the dynamics of a classical system that evolves along its trajectory given
by the initial value. From this, in particular, it follows that if we made a little mistake
in the original state vector |Ψ(0)〉, then this error will exactly persist for any arbitrarily
long period of time, and will not increase, as is possible in the case of classical dynamics.

Suppose we have diagonalized the energy operator H, that is, we have found its
eigenfunctions-vectors |φ0〉, |φ1〉, ..., |φN−1〉 and the corresponding eigenvalues E0 < E1 ≤
E2 ≤ ... ≤ EN−1 (the �rst inequality is always strict, the others are not strict). Then we
can express the solution of the Schrodinger equation with the initial condition |Ψ(0)〉 in
the form of such a decomposition:

|Ψ(t)〉 =
N−1∑
j=0

λje
− i

~Ejt|φj〉, λj = 〈φj|Ψ(0)〉, (7)

which is checked directly. Thus, the solution of the Schrodinger equation reduces to the
solution of the problem on the eigenvalues of the Hamiltonian:

H|φj〉 = Ej|φj〉. (8)

We introduce the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
σx =

(
1 0
0 −1

)
(9)

The Pauli matrices will be both Hermitian and unitary at the same time, and their
eigenvalues will be equal to ±1 (check it out!).

Consider, as an example, one qubit whose state has the general form λ0|0〉+λ1|1〉. We
�nd a solution of the Schrodinger equation for it with the Hamiltonian H = −σx. The
eigenvectors of the state have the form |0〉+ |1〉 - for the eigenvalue E0 = −1, and |0〉−|1〉
- for the eigenvalue E1 = 1, so that the general solution of the Schrodinger equation with
the initial condition |Ψ(0)〉 = |0〉 by the formula (7) after reduction of similar terms will
take the form:

|Ψ(t)〉 = cos(
t

~
)|0〉+ i sin(

t

~
)|1〉 (10)

and we see that over time there will be oscillations of the form: |0〉 → i|1〉 → −|0〉 → ...,
so the qubit will return to the state |0〉 in time t = 2π~.

The Landau density matrix of the state |Ψ〉 is de�ned by the equality ρΨ = |Ψ〉〈Ψ| It
is proposed to prove that the Schrodinger equation for the density matrix has the form

i~ρ̇ = [H, ρ] = Hρ− ρH.
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1.3 Matrix dynamics

The equation (6) means that the state vector is transformed in time by multiplying
by a certain evolution matrix exp(− i

~Ht). We assume that H is a constant matrix, but it
can also be time-dependent - in the latter case, the exponent should be interpreted as a
chronological exponent; we will not deal with this issue, since such an interpretation will
not change anything in essence.

Let the elements of the evolution matrix be denoted as uij, and the initial state is
|Ψ〉 = |Ψ(0)〉 has the form

|Ψ(0)〉 =
∑
i

λi(0)|i〉. (11)

Then the matrix multiplication rule gives the equality λi(t) =
N−1∑
j=0

λj(0)uij. Let's look

at it in more detail. It means that the resulting amplitude λi(t) of any state |i〉 is obtained
by summing di�erent contributions: from each state |j〉, from its amplitude λj(0), this
contribution is obtained by multiplying by uij. Thus, the number uij is the amplitude of
the transition |j〉 → |i〉.

Now let's consider two consecutive time intervals: [0, t] and [t, 2t]. The resulting state
vector is |Ψ(2t)〉 will be obtained by multiplying the initial vector by the second power of
the evolution matrix U2

t . By the matrix multiplication rule, we have

λi(2t) =
N−1∑
j,k=0

λjukjuik (12)

that is, the transition is carried out in two stages: �rst from the state |j〉 to the state |k〉,
and then from |k〉 to |i〉. Generalizing this to the case of �nite time T = nt, we get a
transition from the state |j〉 to the state |i〉 along the path

Figure 7: Matrix dynamics

|j〉 → |k1〉 → ...→ |kn−1〉 → |i〉 (13)

by the polyline with n− 1s links, so that the resulting amplitude is found by the formula

λi(nt) =
∑

j,k1,r2,...,kn−1

λj(0)uikn−1 ...uk2k1uk1j (14)
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Figure 8: Matrix law: the hands of the dial rotate in proportion to the distance traveled,
at the end point all the hands add up

- see Figure 7.

For the evolution matrix, Ut = exp(− i
~Ht) its element 〈a|Ut|b〉 is the amplitude of the

transition from the state |b〉 to the state |a〉. In the �rst approximation of the exponent
on t , we get

〈a|Ut|b〉 ≈ 〈a|1−
i

~
Ht|b〉 = δab −

i

~
〈a|H|b〉. (15)

From this we can draw a simple conclusion. The rule for �nding the amplitude of the
resulting transition is that a) it is necessary to add up the transition amplitudes along all
paths leading from all starting points to the �nal one and b) along any of these paths, the
transition amplitudes are multiplied. This rule is the basis of the "dial method " proposed
by Feynman in the book [7] for a simple explanation of the law of quantum evolution.

So: a single quantum particle behaves like a swarm of independent particles - its
duplicates, so

a) to obtain the resulting complex number Ψ(x, t) at a given point x along each path,
the amplitude of the duplicate is multiplied, b along all paths leading to this point x, the
amplitudes are added, and

b) the probability density of detecting a particle at the point x is its square of the
module: |Ψ(x, t)|2.

The matrix dynamics can be represented as the hands of the dial plate turning along
the traveled path (see the �gure 8).

An illustration of constructive and destructive interference is shown in Figures 9 and
10
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Figure 9: Re�ection of light from a mirror

Figure 10: Constructive and destructive interference
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1.4 Path integrals

What will happen in the limit when we direct the elementary time t to zero, and the
number of links n to in�nity, so that T = tn will be constant? Polyline paths (13) will
be replaced by continuous curves of the form γ : x = x(t), t ∈ [0, T ]. For simplicity, let
us again consider the case of a one-dimensional particle. The summation in (14) can be
divided into two sums: one for j, the other for all intermediate points k1, k2, ..., kn−1. The
�rst sum will give the integral

Ψ(y, t) =

∫
R

K(y, x, t)Ψ(x, 0)dx, (16)

and the second one will turn into a rule for calculating the matrix of a complex
transition in the continuous case:

K(y, x, t) =

∫
γ: x→y

exp(
i

~
S[γ])Dγ, (17)

where S[γ] is the action along the trajectory of γ, which is calculated by the formula

S[γ] =
t∫

0

L(ẋ, x, t)dt, where L(ẋ, x, t) = Ekin−V is the Lagrangian equal to the di�erence

between the kinetic and potential energy of a particle moving from point x(0) = x to
point x(t) = y. This function K(y, x, t) is called the Feynman kernel, and the integral
(17) is the Feynman interval along the trajectories.

The analogy with the discrete case is simple: x plays the role of j, y - the role of i, and
K(y, x, t) - the role of evolution matrix Ut. The summing then turns to the integration
on paths.

If the initial state of the particle Ψ(x, t) is a delta function concentrated at the point
x0, then the Feynman kernel is a wave function at the moment t. For the case of a free
particle, V = 0, so that the action will be an integral of the kinetic energy. It can be
shown (see [8]) that the kernel for a free particle has the form c · exp(−im(x− x0)2/2~t)
for a constant c that depends only on time t. This determines the spreading of the
quantum state of a free particle initially concentrated at the point x0: it will spread over
the entire axis (−∞,+∞) for any arbitrarily short period of time t > 0, which illustrates
the coordinate-momentum uncertainty relation.

Having considered the integral expression in (17), we can see some discrepancy with
the formula (6), namely: there is no minus sign here, and when calculating the exponent,
instead of the Hamiltonian, as in (6), the Lagrangian is used, whose potential energy has
the sign minus. How can you explain this?

Consider the Schrodinger equation for a particle in the potential V . If we do not
pay attention to the kinetic energy, the signs will be all right: the minus ahead of the
exponent compensates for the minus in the Lagrangian. Let's deal with kinetic energy.
Its expression in H = p2

2m
+ Vpot as p

2/2m coincides with the expression in terms of
the Lagrangian in (17): mẋ2/2, but the sign does not �t. However, in the Schrodinger
equation (5), the impulse enters as a quantum impulse p = ~

i
∇ and in (17) - as a classical

impulse mẋ. In order to move from it to the quantum one, it is necessary to perform
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the inverse Fourier transform, which will change the sign: p2/2m will turn into −p2/2m,
which is exactly necessary for matching the Schrodinger equation with the path integral.
For a small section of the trajectory

mẋ2t/2 = −p2t/2m+ px.

Of course, this argument is not a proof that Feynman path integrals are equivalent to
the Schrodinger equation, the formal proof is given in the book [8], to which we refer the
reader for details.

Feynman integrals are thus a continuous analogue of matrix dynamics, which empha-
sizes the naturalness of the transition from continuous to discrete quantities. These inte-
grals naturally generalize to the case of composite systems of many particles, or charged
particles and an electromagnetic �eld, which allows us to calculate, for example, the am-
plitude of photon emission by a relaxing atom (see the book [8]), as well as to generalize
quantum dynamics to the relativistic case when the movements of charges occur at a
speed comparable to the speed of light.

The most important advantage of Feynman integrals is a simple explanation of the
transition from the quantum description of dynamics to the classical one.

First, we consider the re�ection of light from a mirror, the classical law of which is:
the angle of falling is equal to the angle of re�ection. Consider the phase φ of the photon
wave function ψ(x, t) = eiφ(x,t), considering it as a point particle, and its change along
various paths, each of which is determined by the re�ection point x from the mirror (see
�gure 9). The classical trajectory has this property. If it is slightly disturbed, the path
length will not change too much, and the resulting phases along the original and disturbed
paths (the phase is proportional to the path length) will be approximately the same (see
�gure 10). This means that the contribution of trajectories close to the classical one will
prevail, and we can assume that the light moves along the classical trajectory, where the
angle of falling is equal to the angle of re�ection. But if the length of the paths is very
small (the light source is very close to the receiver), then this reasoning will not pass,
it will be necessary to take into account the contribution of all trajectories, not just the
classical one, since then the change in the path length will be comparable to its length.

This reasoning is transferred to the general case and shows the limits of the application
of classical physics.

Consider the formula for the core (17). Here, integration is performed along all paths
going from the start point to the end point. But among these paths there is one special
path γclass - the classical trajectory. This trajectory stands out from the set of all others
in that it satis�es the principle of zero variation of action - Maupertuis principle :

δS[γclass]/δγ = 0, (18)

which is mistakenly called the principle of least action (the action there is not the smallest,
its variation with the variation of the trajectory is zero). Indeed, consider the Lagrangian:
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L(ẋ, x, t) = mẍ/2− V, S[γ] =

T∫
0

L(ẋ, x, t)dt, γ : x = x(t), 0 ≤ t ≤ T

and we will give an increment of δx to the coordinate. Then x → x + δx, ẋ → ẋ + δẋ,
and we will have

δS[γ]/δγ =
T∫
0

L(ẋ+ δẋ, x+ δx, t)dt−
T∫
0

L(ẋ, s, t)dt =

T∫
0

(
∂L
∂ẋ
δẋ+ ∂L

∂x
δx
)
dt =

T∫
0

∂L
∂ẋ
dδx+

T∫
0

∂L
∂x
δxdt =

∂L
∂ẋ
δx
∣∣T
0 −

T∫
0

d
dt
∂L
∂ẋ
δxdt+

T∫
0

∂L
∂x
δxdt = 0 ≡

∂L
∂x

= d
dt
∂L
∂ẋ
≡ −∂V

∂x
= mẍ ≡ F = ma.

Let's say we are modeling a process by choosing a time step dt. If this process can be
adequately represented by choosing such a dt, in which the change in the action of dS will
be much greater than the Planck constant ~ ≈ 10−27 erg sec., then in the formula (17) only
those trajectories that are close to γclass will survive, because the action is comparable
in order of magnitude to its variation, so that for the environment (the environment is a
family of trajectories close to) a non-classical trajectory, it will be very small due to the
rapid oscillation of the exponent and the destructive nature of interference resulting from
this - the sum will contain the lion's share of reductions and will be much less than the
contribution of the environment of the classical trajectory.

If, for an adequate description of the process, it is necessary to take such a small
time step dt that the change in the action on it dS will be comparable to ~, non-classical
trajectories will also have to be taken into account. We can describe the �ight of a bullet
using quantum mechanics, and then at a small dt the bullet will behave like a quantum
object; the accuracy of the �nal result will be the same as with the classical approach,
but computational complexity will make such a method unreasonable. Another thing is
the movement of an electron in an atom - here it is necessary to make dt very small, so it
will be impossible to neglect non-classical trajectories.

So, here we rely on the possibility of simply discarding very small amplitudes - a
powerful heuristic approach that will later lead us again to the need for a certain deter-
minism, but no longer reducible to Newtonian mechanics; the post-quantum determinism
for complex systems.

Let's try using Feynman integrals along the trajectories to �nd out what the state of
a free point particle moving along the OX axis will look like at the moment t > 0, if
at the zero moment it was at the origin of coordinates. We assume that the trajectories
of duplicates of this particle at a small t are straight line segments, and the speed of
its movement along these segments is constant. Then, on a segment of length x, the
velocity will be equal to x/t, and substituting this velocity value into the expression for
the Lagrangian, we get the Feynman core in the form of a exp( imx

2

2~t ), where a is a constant.
The graph of the real part of this function is shown at the �gure 11.
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Figure 11: The real part of the Feynman core of a free particle.

Show that this state is consistent with the de Broglie wave

exp

(
ipx

~
− iEt

~

)
in the following sense: duplicates of a particle that have reached the point x during the
time t will have the same de Broglie oscillation period as Feynman in 11.

For a free particle, it is very important to have duplicates with di�erent velocities,
and the distribution over all velocities should be uniform, so that any velocity in a virtual
swarm of duplicates should be represented by the same number of duplicates.

The dynamics of a free particle cannot be replaced by simple movements from one
point to a neighboring one on a set of points of the form x = ε, 2ε, 3ε, ..., since a free
particle has the ability to " jump" through many points at once. This feature should be
taken into account when modeling free motion in terms of photon movements between
optical cavities.

1.5 Exercises

1. Explain the e�ect of restoring the shape of the parts of the wave function-Gaussians
when they "collide" (�gure 12).

2. To explain the e�ect of di�erent spreading rates of a wave packet in the form of a
Hamiltonian with di�erent degrees of dispersion. Is there a contradiction here with the
theorem on the existence and uniqueness of the solution of the Cauchy problem for the
Schrodinger equation? (see �gure 13). The speed of spreading much decreases from the
left picture to the right.

3. Calculate the approximation of the Dirac delta function in the form of the Fourier
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Figure 12: Collision of two Gaussians

Figure 13: Gaussian propagation with di�erent dispersion
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Figure 14: Approximation of the Dirac delta function by a space segment constraint;
argument p, p0 = 0.

transform of the de Broglie wave:

φ(p) = Fe
i
~p0x =

∫ A

−A
e
i
~p0xe−

i
~pxdx

(see �gure 14).
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2 Lecture 2. Composite systems

2.0.1 Tensor products

We have already received the simplest gate implementing the unitary operation σx:
we need to create a quantum dot whose evolution obeys the Hamiltonian σx, and wait for
the time t = 2π~. Such a dot is a charge in a two-hole potential.

But for full-�edged quantum computing, we need more complex gates, two-qubit ones.
To do this, we need to introduce the concept of a tensor product.

Let us have two sets (two registers) of qubits: A and B with nA and nB qubits in
each. The sets of classical states of these registers are: KA = {0, 1, ..., NA − 1} and
KB = {0, 1, ..., NB − 1}, respectively, where NA = 2nA , NB = 2nB . The quantum state
space for the register A is LA = CNA , for the register B - LB = CNB . The tensor product
LA ⊗ LB of the spaces LA and LB is the state space of the composite system of qubits
A ∪ B - CN , where N = 2n, n = nA + nB. Its orthonormal basis will be the Cartesian
product KA ×KB (see �gure 15).

The general form of a vector from the tensor product of spaces will be:

|Ψ〉 =
∑

j∈{0,1,...,NA−1},k∈{0,1,...,NB−1}

λj,k|jk〉 (19)

Figure 15: The tensor product is the result of Cartesian lifting using the quantum Q
operation-taking a linear span

Let |ΨA〉 =
NA−1∑
a=0

λa|a〉 and |ΨB〉 =
NB−1∑
b=0

λb|b〉 be the quantum states of the registers A

andB. Let's de�ne their tensor product as |ΨA〉⊗|ΨB〉 = |ΨA〉|ΨB〉 =
∑

a∈KA,b∈Kb
λaλb|a〉|b〉.

We will omit the ket-bra and just write |ab〉. The tensor product obeys the same rules as
the usual one, for example, we can take out of brackets a common multiplier.

The state of a composite system that cannot be represented as a tensor product of
|ΨA〉|ΨB〉 is called entangled. An example of such a state is the EPR pair: |00〉+ |11〉.
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Prove that this state cannot be represented as a tensor product of states of the �rst
and second qubits.

Try to formalize the question and answer to it: �Which states are more: entangled or
nonentangled?�

Let UA : LA → LA, UB : LB → LB be two linear operators on the quantum state
spaces of these registers. The tensor product of these operators UA⊗UB is de�ned for the
basis vectors as follows: UA ⊗ UB|ab〉 = UA|a〉 ⊗ UB|b〉, and we will extend the linearity
to the entire space. The rule for �nding the tensor product matrix for one-qubit spaces
is illustrated by the example:

UA =

(
a11 a12

a21 a22

)
, UB =

(
b11 b12

b21 b22

)
, UA ⊗ UB =

(
a11UB a12UB
a21UB a22UB

)
,

the generalization of this rule to higher dimensions is obvious. The tensor product matrix
will have a dimension equal to the product of the dimensions of the original matrices.

Prove this by using the standard notation of the basis vectors in the form of columns,
and moving on to the Dirac notation. Use the natural ordering on the basis vectors from
the tensor product: for one qubit |0〉, |1〉, for two qubits |00〉, |01〉, |10〉, |11〉.

It is proposed to prove the following formulas:

eA⊗I = eA⊗ I, (A⊗ I) · (I⊗B) = A⊗B, eA⊗I · eI⊗B = e(A⊗I)+(I⊗B), [(A⊗ I), (I⊗B)] = 0,

where · denotes an ordinary matrix product, I denotes an identical matrix.

2.1 Partial measurements. Mixed states

Figure 16: Density matrix .

For multiparticle systems, a new question about partial measurement arises. If we
have two particles, for example, two qubits, we can measure only one of them, leaving the
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Figure 17: Bipartite entanglement .

second una�ected. In what state will then be una�ected qubit? To solve this problem,
we turn to the algebraic form of the measurement result.

First, let's consider the case of a single qubit and the above-de�ned measurement of
its state |Ψ〉 as a random variable. The following equality immediately follows from the
matrix multiplication rule

pj = 〈j|ρΨ|j〉
The trace of the density matrix will be found by the formula tr(ρΨ) =

∑
j〈j|ρΨ|j〉 and

for one qubit this sum will be equal to 1. We see that the con�guration of the form 〈a|b〉
always gives a number, and if a and b are vectors from the orthonormal basis of states
of one qubit, this number is equal to δab - the Kronecker symbol equal to zero for a 6= b
and one for a = b. This observation allows us to generalize the rule of working with Dirac
symbols to tensor products, if we assume that in this case a and b must refer to the same
real particle.

Consider the density matrix of the joint system of the form

ρ =
∑

j′,j′′,k′,k′′

ρj′,k′,j′′,k′′ |j′, j′′〉〈k′, k′′| (20)

where one streak denotes the �rst subsystem, the double streak denotes the second sub-
system.

Let we measure the �rst qubit and obtain the value |j〉. Which state the second qubit
will be in? We have to obtain the density matrix ρ2 of the second qubit as we found the
probability in the case of only one qubit: by enclosing of the density matrix by the same
state from the left and right side. But now we must enclose it by the state of the �rst
subsystem only: �〉. Taking into account the orthonormality of all basic states of the same
subsystem, we have:

ρj2 =
∑

j′,j′′k′,k′′

ρj′,k′,j′′,k′′〈j|j′〉|j′′〉〈k′|〈k′′|j〉 = ρj,j,j′′,k′′ |j′′〉〈k′′|
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We note that the trace of this matrix must not be one, because we separate only one state
of the �rst qubit |j〉.

Summing on j, we �nd

ρ2 =
∑
j′′,k′′

rj′′k′′ |j′′〉〈k′′|, rj′′k′′ =
∑
j

ρjjj′′k′′ (21)

The formula (21) gives a simple mnemonic rule for determining the result of a partial
measurement: to obtain the element ρ1(j′′, k′′) of the density matrix of the �rst qubit, it
is necessary to sum up all the elements of the density matrix of both qubits with numbers
obtained by all possible identical additions of the pair j′′, k′′ to a pair of indices of a
two-qubit density matrix.

However, the matrix ρ2 obtained by the formula (21), generally speaking, will no longer
have the form |ψ〉〈ψ| for any state |ψ〉 of the �rst qubit. To make sure of this, consider
the example: |Ψ〉 = |EPR〉 = 1√

2
(|00〉+ |11〉).

The state density matrix |EPR〉 is


1/2 0 0 1/2
0 0 0 0
0 0 0 0
1/2 0 0 1/2

 (22)

You are invited to make sure that the measurement of the second qubit in this state
gives the matrix

(
1/2 0
0 1/2

)
(23)

The matrix (23) has rank 2, and therefore it cannot be a density matrix of any quantum
state vector. Thus, we come to the need to expand the concept of state. We will call
the state vectors pure, and we will call the "states" described by matrices similar to (23)
mixed - see Figure 18.

So, the mixed state is the result of measuring one part of a vector-the state of a
composite system. Let's assume that the vector state of a composite two-qubit system
has the form:

|Ψ〉 = λ00|00〉+ λ01|01〉+ λ10|10〉+ λ11|11〉.

If we measure only the second qubit, then the result of such a measurement should be
either |0〉 or |1〉. How likely is p2(0) to get |0〉 for the second qubit? This probability,
according to the measurement logic, should be equal to p2(0) =

∑
j

|λj0|2. Similarly,

the probability of getting |1〉 in the second qubit will be p2(1) =
∑
j

|λj1|2. The total

probability will, of course, be singular. If we get |0〉 in the second qubit, then in the �rst
one, which is not directly a�ected by the measurement, we should get the state |ψ0〉 =
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Figure 18: A mixed state is a reservoir with pure states .

a0

∑
j

λj0|j〉, where the normalization coe�cient a0 = (
∑
j

|λj0|2)−1/2. Similarly, if the

second qubit has the state |1〉, then the �rst qubit will be in the state |ψ1〉 = a1

∑
j

λj1|j〉,

where the normalization coe�cient a1 = (
∑
j

|λj1|2)−1/2.

Since in the general case |ψ1〉 does not coincide with |ψ0〉, we cannot sum these states
as vectors in Hilbert spaces. But you can sum up their density matrices by entering a
weight coe�cient for each of them: p2(0) or p2(1). as a result, we get a "density" matrix
of the form|ψ1〉 = a1

∑
j

λj1|j〉, where the normalization coe�cient

ρ1 = p2(0)|ψ0〉〈ψ0|+ p2(1)|ψ1〉〈ψ1|. (24)

You are asked to make sure that this exactly matches the matrix (21).

Thus, in the general case, when the system is divided into two subsystems, the "den-
sity" matrix of the measurement result of the second subsystem, found by the formula
(21), will have the form

ρ1 =
∑
k

pk|ψk〉〈ψk|, (25)

where |ψk〉 are the state vectors of the �rst subsystem obtained as a result of measuring the
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second subsystem, provided that the result of this measurement for the second subsystem
was equal to |k〉.

The formula (25) sets the general form of the mixed state, which we will identify with
the density matrix ρ1. However, for a given density matrix ρ1, the decomposition of (25)
is not uniquely de�ned. The fact is that a system that is in a pure state |Ψ〉 can also be
in another pure state |Φ〉 with a probability of |〈Ψ|Φ〉|2.

A mixed state means that the system is in some kind of pure state, but we don't know
which one. Therefore, if all the pure states of |ψk〉 in (25) are mutually orthogonal, there
is no coherence between them, and in this case this decomposition is uniquely de�ned.

A natural question arises: how to physically distinguish the EPR pair 1√
2
(|00〉+ |11〉)

from a mixture of the form 1
2
|00〉〈00| + 1

2
|11〉〈11|? Measurements in the standard basis,

as we have seen, do not allow this to be done. But if we change the measurement bases,
this will a�ect the diagonal of the density matrix, and we will be able to distinguish the
EPR pair from the mixture. You are invited to consider all the details independently.

In what case does a partial measurement of one qubit in a pure state of a two-qubit
system result in a pure state, not a mixed one? Prove that this happens if and only if the
initial state is not entangled.

Let U1 : H1 → H1, U2 : H2 → H2 be two operators in di�erent Hilbert spaces. Their
tensor product U1 ⊗ U2 acts on the tensor product of the spaces: U1 ⊗ U2 : H1 ⊗H2 →
H1 ⊗H2. This function is de�ned naturally as a linear continuation of the action on the
basis states: U1 ⊗ U2 : |jk〉 → U1|j〉 ⊗ U2|j〉.

Let M be the set of qubits of the system under consideration, consisting of n qubits,
and |Ψ〉 is some quantum state of these qubits. It is called non-entangled if there is such
a partition ofM = M1∪M2 into two disjoint non-empty sets and the states |Ψ1〉, |Ψ2〉 on
these sets, such that |Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉. Otherwise, the state of |Ψ〉 is called entangled.

The naive complexity of the state |Ψ〉 on the set M is the size in qubits of the carrier
of its maximum entangled tensor divisor. In other words, the naive complexity of a state
is the maximum of the natural numbers s, such that there is a subset of M1 ⊆ M and
the states |Ψ1〉, |Ψ2〉 on M1 and M −M1, respectively, such that |Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉, M1

contains s elements and |Ψ1〉 is entangled. Such a state |Ψ1〉 is called the quantum kernel
of the state |Ψ〉, and the corresponding set M1 is the carrier of the kernel.

There can be several kernels, since the maximum number of s from the de�nition can
correspond to di�erent sets of M1 qubits. Naturally, this de�nition may depend on very
small amplitudes, so that a complex state may be very close to a simple one. However, if
we consider only states whose amplitudes λj have a "grainy" form

λj = εnj + iεmj, nj,mj ∈ Z,

this proximity will be limited by the grain size ε. From what follows, it will be clear that
it is impossible to aim ε to zero for complex systems, and therefore the naive complexity
is de�ned correctly in this way. This de�nition of complexity depends on the basis in
which we consider the states.
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2.2 Schmidt Theorem

The entangled state in a composite system consisting of two components S1 and S2

has the form (26) and is unrepresentable as a tensor product.

|Ψ〉 =
∑

j=0,...,N−1,k=0,...,M−1

λjk|j1k2〉 (26)

Its storage in the computer memory is very expensive: it is necessary to store the
matrix λjk in contrast to the state (27),

|Ψ〉 ⊗ |Φ〉 =
N−1∑
j=0

λj|j〉 ⊗
M−1∑
k=0

µk|k〉 =
∑

j=0,...,N−1;k=0,...,M−1

λjµk|jk〉 (27)

where it is necessary to store only two vectors in memory. It turns out that there is a
possibility of a more economical representation of entanglement, but this representation is
suitable only for a given �xed state, since this requires changing the basis in both spaces
- speci�cally for this �xed state|Ψ〉 ∈ CN ⊗ CM .

Namely, the following takes place

Theorem (Schmidt).For any state |Ψ〉 of the form (26) of a composite system, there
are new orthonormal bases
|J0〉, |J1〉, ..., |JN−1〉; |K0〉, |K1〉, ..., |KM−1〉 in the component spaces CN , CM , such that

|Ψ〉 =
S∑
q=0

αq|Jq〉|Kq〉 (28)

where S = min(N−1,M−1), and αq are non-negative real numbers such that
S∑
q=0

|αq|2 = 1.

The proof of this theorem is carried out by induction on max(N,M). Let |Ψ〉 =
|Ψ1〉|Ψ2〉 be an un-entangled state. Then the theorem is ful�lled in an obvious way. Let's
analyze the case when |Ψ〉 is an entangled state.

The set of non-entangled states N is closed as a subset of Euclidean space. Indeed, if
|ψn1 〉|ψn2 〉 → |Ψ〉, then the sequences |ψn1 〉 and |ψn2 〉 have limits |ψ1〉 and |ψ2〉, respectively,
and we will have |ψn1 〉|ψn2 〉 → |ψ1〉|ψ2〉 with n→∞.

So, there is a point in N , the distance from which to the end of the vector |Ψ〉 is
minimal, let it be the end of the unnormalized vector |Φ0〉: |Ψ〉 = |Φ0〉 + |A〉, so that
‖A‖ is the distance from |Ψ〉 to N . Since |Φ0〉 ∈ N , we have |Φ0〉 = |J0〉|K0〉 for some
vectors |J0〉 ∈ CN , |K0〉 ∈ CM ; we will take these vectors as the initial vectors in the
(28) decomposition. We need to prove that none of these vectors are present in the
decomposition of |A〉, then an induction step will be taken, since we will then do the same
with |A〉 as with |Ψ〉. If one of the vectors |J0〉, |K0〉 were present in the decomposition of
|A〉, we would get a contradiction with the minimality of the vector |A〉, because it would

37



be possible to "split" a little more from it, which is impossible due to the choice of |A〉.
The details are provided to the reader.

Schmidt theorem gives a numerical characterization of the entanglement measure of
the composite state |Ψ〉 ∈ CN ⊗ CM as the entropy of the probability distribution |αq|2.
Entropy of the distribution p̄ is E(p̄) = −

∑
i

ln(pi)pi.

This Theorem has another useful consequence - the existence of the so - called SV D
- decomposition of an arbitrary matrix A in the form SAV = D, where S, V are unitary
matrices, and D is diagonal. This decomposition generalizes the theorem on reducing
Hermitian and unitary matrices to a diagonal form; only here the matrix A is arbitrary,
not even necessarily square, and S and V are not connected in any way, they may even
have di�erent dimensions. This consequence is immediately obtained if we represent the
matrix A as a set of coe�cients λjk from the decomposition (26) of the state of the
composite system; then S and V will be the transition matrices to the bases |Ji〉 and |Kj〉
in the condition of the Theorem.

What if we have only one of the two components of the composite system at our
disposal, for example, S1, and the other S2 is out of access? In this case, we have, in
fact, only the density matrix ρ1 of the �rst subsystem, so we don't even know about the
existence of the second component. Is it possible in this case to "restore" the pure state
of |Ψ〉, such that ρ1 = tr2(|Ψ〉〈Ψ|)?

Yes, it can be done, and very simply. Let CN be the space of quantum states of
the subsystem S1 Let's take another instance of S1, which we denote by S ′1, and the
corresponding space of quantum states CN , whose vectors we will denote with the same
letters as for S1, which will not cause misunderstandings, since we always write the states
S1 �rst and S ′1 second in the tensor product. Taking the eigenvalues Ai of the matrix ρ1

and the corresponding eigenvectors |φi〉, we put αi =
√
Ai, and de�ne |Ψ〉 ∈ CN ⊗ CN

as
N−1∑
i=0

αi|φi〉|φi〉. Then, from the rule of �nding the relative density matrix, we get

ρ1 = tr2(|Ψ〉〈Ψ|).

This observation also implies the method of �nding the matrices S and V in the SV D
decomposition. It is necessary to turn the matrix A into the state |Ψ〉 of the composite
system by taking (26)in the decomposition its coe�cients, then �nd its density matrix
ρΨ = |Ψ〉〈Ψ|, the relative density matrices ρ2 = tr1(ρΨ) and ρ1 = tr2(ρΨ), which will
have the same sets of eigenvalues that coincide with the numbers |αi|2 in the Schmidt
decomposition for |Ψ〉, then search for Schmidt decomposition of the state |Ψ〉, choosing
as |Ji〉, |Ki〉 the eigenvectors of the operators ρ1 and ρ2.

2.3 The paradox of quantum entropy

What is the order in a complex system? The order is an alternative to the chaos. If
the system is classical, and p̄ = (p0, p1, ..., pN−1) is a list of probabilities of �nding this
system in classical states x0, x1, ..., xN−1, then the degree of chaos is the Shannon entropy

Sh(p̄) = −
N−1∑
i=0

pi ln(pi),
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When adding new elements to the system, the classical entropy is Sh(p̄) can only increase,
therefore, the order cannot increase.

How to generalize the Shannon entropy to the case of a quantum system? A natural
generalization is the von Neumann entropy

N(ρ) = −tr(ρ ln(ρ)),

where ρ is the density matrix, which in the quantum case replaces the probability distri-
bution p̄.

Consider the state of two qubits |Ψ〉 = 1√
2
(|00〉 + |11〉). Its entropy is zero. Indeed,

the entropy of any pure state in general is zero. Prove this by reducing the matrix ρ to
a diagonal form and showing that the entropy of the state of the form |j〉〈j|, where |j〉 is
one of the basis vectors, is zero.

Let's assume that we have removed the second qubit by a large distance, so that
only the �rst qubit remains in our hands. Then this qubit will be in a mixed state
ρ1 = tr2(|Ψ〉〈Ψ|), and N(ρ1) = ln(2) > 0. That is, when adding a second qubit, the
entropy of the quantum state will decrease.

The e�ect of increasing the order during the expansion of the system is a counter-
intuitive, purely quantum e�ect. It occurs due to the presence of entanglement, which
connects the various physical parts of the system of many bodies.
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3 Lecture 3. Quantum gates

Figure 19: R.Feynman

The user interface of a quantum computer proposed by R. Feynman is based on quan-
tum gates and arrays of them (quantum gate arrays). A quantum gate is a unitary
operator operating in the state space of one, two or three qubits, which can be imple-
mented physically. If we take all single-qubit gates and add almost any two-qubit gate to
them, for example, the gate
CNOT: |x, y〉 → |x, y ⊕ x〉, we can get a complete system of gates: any unitary trans-
formation can be expressed using gates from this set with any predetermined accuracy
(see [9]). A huge variety of interesting operators can be built on combinations of gates.
A reader who loves algebraic exercises can refer to the book [10], which contains many
interesting problems on quantum computing.

Thus, the �rst task of implementing the Feynman scheme of quantum computing is
the implementation of single-qubit gates and CNOT. Consider a CiNOT gate that is close
to CNOT: CiNOT |x, y〉 = eiπx/2CNOT |x, y〉. We will show how to implement the one-
qubit gate iNOT : |x〉 → i|x ⊕ 1〉 and the quantum gate CiNOT on the charge states
of electrons in quantum dots. Having one-qubit gates and CiNOT, it is also possible
to implement CNOT, since it is obtained from CiNOT by applying a one-qubit relative
rotation of the phase e−iπx/2to the �rst qubit. This implementation of CNOT is one of
the �rst proposals for the implementation of entangling gates on charge states (see [11]),
its scheme is the simplest, although it presents certain technological di�culties.

Shredinger equation for one dimensional quantum particle looks as

i~Ψ̇ = HΨ, H =
p2

2m
+ V, p =

~
i

∂

∂x
,

where V = V (x) is the potential.

The potential hole is the simplest form of quantum dot. Cauchy problem for Shredinger
equation in the potential hole looks then as

i~Ψ̇ = − ~2

2m

∂2Ψ

∂2x
+ VΨ. Ψ(t, 0) = Ψ(t, L) = 0,Ψ(0, x) = Ψ0(x), x ∈ [0, L] (29)
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The eigenfunctions of this problem - solutions of the equation Hφn = Enφn with the
boundary conditions taken from (29), looks as φn = cn sinπxn/L, when cn is the norming

coe�cient, which can be found from the condition
L∫
0

|φn(x)|2dx = 1.

Figure 20: A quantum dot in the form of a two-hole potential. If the particle is in one
hole initially, it will oscillate between these two holes.

We introduce the concept of a quantum dot. This is a small region in a solid-state
structure in which a potential is created in the form of two wells with a su�ciently high
potential barrier between them, and one electron can be in this potential (see �gure 20).

Finding an electron in the right well means the state |0〉, in the left - |1〉.

The nonlcassical behavior of the particle in the assymetric two hole potential is demon-
strated at the �gure 21.

The Hamiltonian of such a system has the form H = c1I − bσx, where σx is the �rst
Pauli matrix de�ned in (9), b > 0. You can show that the eigenstates of this Hamiltonian
will be

|φ0〉 =
1√
2

(|0〉+ |1〉, |φ1〉 =
1√
2

(|0〉 − |1〉, (30)

moreover, their eigenvalues are ordered so that E0 < E1, so that |φ0〉 will be the main
state, and |φ1〉 will be the excited state. We �nd a solution to the Cauchy problem for
the Schrodinger equation with such a Hamiltonian in the form

|Ψ(t)〉 = A0e
− iE0t

~ |φ0〉+ A1e
− iE1t

~ |φ1〉 = e−
iE0t
~ (A0|φ0〉+ e−

i(E1−E0)t
~ A1|φ1〉) (31)

and now, considering that the states of eiθ|Ψ〉 are physically indistinguishable for any
vector |Ψ〉, we come to the conclusion that to implement the gate NOT: |0〉 → |1〉, |1〉 →
|0〉, it is enough just to wait for a while 1

2
τ = π~/(E1 − E0).

It follows from the formula (100) that the basic states of an electron in a quantum dot
oscillate, that is, they pass one into another |0〉 → |1〉 → |0〉 and |1〉 → |0〉 → |1〉 with
the period τ = 2π~/(E1 − E0), which we will call the oscillation period.
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Figure 21: Two assymetric holes. Nonclassical behavior of a particle: given the initial
condition in the higher hole it continues to stay in it with the large probability

Here we ignored the phase multiplier e−
iE0t
~ , which has no physical meaning if the NOT

operator is performed for any states. But suppose that NOT is performed conditionally,
for example, only if some other qubit has the value 1, and if its value is 0, then NOT
over x is not performed. In this case, it is necessary to take into account the total run
of the phase, and take into account this multiplier. Find E0 and E1 and write an exact
expression for the operator implemented by this subroutine at x = 1 for the time τ/2.
Answer: this is the iσx operator. We will show how to implement an operator close to
CNOT on atomic excitations, where the Hamiltonian will have the inverse sign, and the
similar operator will have the form −iσx.

The implementation of the CiNOT gate requires two quantum dots located perpendic-
ular to each other, as shown in the �gure 22. The Coulomb interaction of two electrons,
each of which is located at one of these points, leads to the e�ect of changing the potential
barrier at the point y. The potential barrier between the wells at the point y turns out
to be higher if the electron of the point x is in the state |1〉, compared to the situation
when the electron of the point x is in the state |0〉 due to the fact that the repulsion of
electrons is higher at a close distance.

Let's �rst assume that we managed to �x the position of the electron x in some way,
so that it does not tunnel between its wells. Then you can �nd such a time τCiNOT that
after this time the conversion of CiNOTwill occur. Indeed, let the di�erence of the energy
levels of the y - electron corresponding to the positions of the x - electron |0〉 and |1〉 be
equal to dE0 = E0

1 − E0
0 and dE1 = E1

1 − E1
0 , respectively. Then the oscillation periods

for the y electron when the x electron is at the position |0〉 and |1〉 will be, respectively,
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Figure 22: CiNOTon charge states

Figure 23: The work of two dots implementing CNOT gate

τ0 = 2π~/(dE0) and τ1 = 2π~/(dE1). By varying the distance between the points, we can
choose these values in such a way that for a certain time value τCiNOT , an even number of
oscillations with an upper index of 0 and an odd number with an upper index of 1 would
�t into it, which will give us the required operator CNOT when �xing the position of
thex electron. The details are provided to the listeners.

How to prevent tunneling of the x - electron? This can be done by increasing the
potential barrier between the wells at the x point so that during the tunneling between
them, the x electron was signi�cantly less than τCiNOT , and then, after making CiNOT ,
again reduce this barrier to the usual level, which is done by the external potential. This
is how the CiNOT gate is implemented. The problem is that an electron that is in
the excited state |φ1〉 at one point is able to emit a photon, going into the state |φ0〉,
which will prevent the implementation of the CiNOT gate according to this scheme.
A similar problem always occurs when implementing confusing error gates. For short
computations, they may be negligible, but for practically important long computations,
they pose a problem. We will return to this topic later, when studying more realistic
models of quantum computers.

The other way to realize the CNOT gate is shown at the pictures 24, 25

The scheme of realization of CNOT in Paul trap is shown at the �gure 25
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Figure 24: Pseudo-potential of the Paul trap.

3.1 Single-qubit gates, CNOT,CSign,Λφ and Toffoli

Prove that one-qubit gates have the form

eα
(

ei(φ+ξ)cos(θ) ei(φ+ξ)sin(θ)
−eiφsin(θ) cos(θ)

)
for some real α, ξ, θ, φ. Instruction: �nd the number of independent real parameters de�n-
ing the unitary operator.

How to get the root of the gate NOT - that is, such a gate V that V 2 = NOT?

The gate CNOT is a 1-controlled NOT, it is de�ned as CNOT |x, y〉 = |x, x ⊕ y〉,
where ⊕ is addition modulo 2. Construct the matrix CNOT .

2-controlled gate U is de�ned as

Λ2U : |x, y, z〉 =

{
|x, y, z〉 if xy = 0,
|x, y〉U |z〉, if xy = 1

To�oli gate is Λ2NOT . Show that the gate Λ2U can be implemented using the quan-
tum gate system shown in Figure 26.

Instructions. Consider only the actions of gates on the basic states.

3.2 The concept of quantum cryptography

The practical application of quantum one-qubit gates is provided by quantum cryp-
tography. We will show its advantage over classical cryptography using the example of
the quantum cryptographic protocol BB84, the �rst of a large series of similar protocols.
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Figure 25: Schematic representation of the realization of CNOT by Paul ion trap. Logical
qubits are internal atomic states of positively charged metallic ions; mechanical oscillations
plays the role of ancilla. The ions in Paul trap are �xed in their places along the main
axes by the oscillating electrical potential on the wires, which with the Coulomb repulsion
between ions forms the pseudo potential.

Figure 26: Implementation of a 2-controlled gate using CNOT and a one-bit V , where
V 2 = U

We will give a short introduction to the problem of cryptography - see �gure 27. It
consists in providing a secure connection between the transmitting subject (Alice) and
the receiving one (Bob). If Alice sends Bob a binary string e1, e2, ..., then Eve (the
eavesdropper) can intercept it on the communication line, copy it and forward it to Bob
without changes, thus �nding out the information without revealing herself. To prevent
such a scenario, Alice and Bob must have a common key - the binary string k1, k2, ....
Alice encodes her message by sending Bob not e1, e2, ..., but e1 ⊕ k1, e2 ⊕ k2, ... and Eve,
without knowing the key, will not be able to decrypt anything. Bob can easily do this
by adding ki to the received message ei ⊕ ki, and getting the original ei. The task of
cryptography, therefore, is reduced to the distribution of the secret key k̄.

No classical method can ensure the safe distribution of the key for the following reason:
any classical message can be copied. Copying is a mapping of the form

Uclon : |Ψ〉|0〉 → |Ψ〉|Ψ〉 (32)

and in the case of the classical - base state, this is done by simply using the CNOT
operator. However, if |Ψ〉 is a superposition of classical states, this technique will not
work. Indeed, suppose that there exists such a unitary operator U that the equality (32)
is satis�ed for any quantum state |Ψ〉. Let's take as |Ψ〉 the state 1√

2
(|0〉+ |1〉). Then we

have:
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Figure 27: Cryptography scheme: quantum key distribution between Alice and Bob

U |Ψ〉|0〉 = 1
2
(|00〉+ 01〉+ |10〉+ |11〉),

U |Ψ〉|0〉 = 1
2
U ||00〉+ U |10〉 = 1

2
(|00〉+ |11〉)

that is contradiction.

So, copying quantum states is impossible, and precisely because we can use the super-
position of the basic states. It can be practically used like this.

Let A = 1√
2
(σx+σz) be the Hadamard gate. Alice, in addition to the main "blank" key

k1, k2, ..., also creates a random sequence of binary characters bas1, bas2, ..., and encodes
any ki in the form of ki if basi = 0 and in the form of A|ki if basi = 1. So she sends
the encoded string bas(k1), bas(k2), ... to Bob. If Bob knew the sequence bas1, bas2, ..., he
would quickly decipher Alice's message, but he does not know this sequence. Then Alice
acts in an unexpected way - she sends Bob a second message - this sequence bas1, bas2, ...
- over an open classical communication channel, which Eve listens to, but cannot distort!
Bob, of course, immediately restores the �blank" key k1, k2, ....

If Eve is in the channel, she must distort the states of bas(ki)) by her intervention,
otherwise she will not know anything, that is, in fact, she is not in the channel. How do
I �nd out if Eva is in the channel? Very simple. Alice sends Bob the values of ki from
a randomly selected sequence i = i1, i2, ... and Bob, having received this message, and
comparing it with his decryption of ki, determines the presence of Eve by a mismatch.
Thus, the presence of Eve in the communication channel can be reliably detected, and
if it is not present, it can be transmitted safely. This is the idea of the BB84 protocol.
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Then the so-called increased secrecy is applied, when this procedure is done not on the
entire billet ki but only on its part, etc. We will not go into details here.

Quantum cryptography has now become a huge �eld, many quantum cryptographic
protocols are known, and all of them are based on the prohibition of quantum cloning
of arbitrary states. We see that even without the use of entanglement, the quantum
mechanics of a single qubit gives us a tangible advantage over classical methods in the
�eld of information protection.

Let's pay attention to the fact that the concept of "someone knows" is signi�cantly
used in this area. This is not a mathematical concept, but rather a humanitarian one,
and its use in mathematics cannot be considered correct. Therefore, to ensure the secrecy
of quantum cryptographic protocols, it is necessary to formalize the concept of "someone
knows something".

The von Neumann quantum entropy for the mixed state ρ is de�ned as

S(ρ) = −tr(ρ log(ρ)).

We de�ne the concept of quantum relative entropy for a pair of density matrices ρ, σ as

S(ρ‖σ) = tr(ρ(log(ρ)− log(σ))

.

Mutual information between two entities A and B can now be de�ned as

I(A : B) = S(ρA) + S(ρB)− S(ρAB)

where A and B are two parts of the same AB system, and the subscript denotes the
relative density matrix.

It can be shown that
I(A : B) = S(ρAB‖ρA ⊗ ρB).

This is the standard de�nition of the concept of the degree of �knowledge� of the subject A
about the subject B. Thus, it completely �ts into the mathematical formalism of quantum
theory. A possible attack on a quantum cryptographic channel may consist either in using
noise as a cover, or using restrictions on the quantum description of states as such. The
�rst method works only if the noise level in the channel signi�cantly exceeds 12% . The
second way assumes the existence of restrictions on the quantum formalism as such, which
is impossible in simple systems: these restrictions occur only in complex systems. Thus,
quantum cryptography provides a fundamentally higher reliability of key distribution than
classical cryptography, and is used for transmitting data of special importance.

3.3 Quantum teleportation

The anti-cloning theorem plays an important role in quantum cryptography, making
it an absolutely reliable way of transmitting information. However, it is possible to move
a quantum state over a distance without moving its carrier. To do this, you need a kind
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Figure 28: Teleportation scheme

of information channel formed by the EPR pair |epr〉 = 1√
2
(|00〉+ |11〉). This protocol is

called quantum teleportation.

It consists of the following. Alice and Bob have an EPR pair, whose qubits we denote
by the indices A and B, respectively. Alice also has another additional qubit, which we
denote by C in an unknown state λ|0〉 + µ|1〉, the state of which Alice wants to transfer
to Bob. To this end, Alice performs the CNOT operator on the qubits C and A, then
she performs the Hadamard transformation on C:

|0〉 → 1√
2

(|0〉+ |1〉), |1〉 → 1√
2

(|0〉 − |1〉)

after that, she measures both of its qubits and sends the measurement result - the classical
state of two qubits - to Bob. Bob is able to restore an unknown state |Ψ〉in his qubit
based on the information received. The teleportation scheme is shown in the �gure 28.

The correctness of the operation of such a scheme is checked by the calculation shown
in the �gure 29. Here the order of the qubits is accepted: A,B,C, and the normalization
coe�cients are omitted.

(|0A0B〉+ |1A1B〉)(λ|0C〉+ µ|1C〉) =
λ|000〉+ λ|110〉+ µ|001〉+ µ|111〉 →
λ|000〉+ λ|001〉+ µ|101〉+ µ|011〉 →
λ|00〉(|0〉+ |1〉) + λ|11〉(|0〉+ |1〉) + µ|10〉(|0〉 − |1〉) + µ|01〉(|0〉 − |1〉) =
λ|000〉+ λ|001〉+ λ|110〉+ λ|111〉+ µ|100〉 − µ|101〉+ µ|010〉 − µ|011〉

(33)

The experimental quantum teleportation has been realized between two anary Islands
(see �gure 30).
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Figure 29: Calculating the teleportation result

4 Lecture 4. Grover search algorithm

For the practical construction of quantum algorithms, we must now specify the form
of the function F , which we previously called an algorithm. The quantum algorithm is
a drawing consisting of n parallel wires located on top of each other, with highlighted
beginnings and ends. These wires are connected by perpendicular jumpers, each of which
corresponds to a speci�c quantum gate. An example of the algorithm is shown in the
�gure 28.

Quantum computation corresponding to a given algorithm is a sequence of the form

C0 −→ F0(C0) −→ F1(F0(C0)) −→ . . . −→ FT−1(. . .F0(C0) . . .), (34)

consisting of the results of successive applications of the algorithm gates from left to
right, where the initial state |C0〉 of the memory is placed in the beginnings of the wires
along the qubits, from bottom to top. Thus, the wires actually set the direction of the
algorithm's running time. The �nal state is obtained as the state of the �nal vertices of
the wires. After the end of the work, it can be measured, then the result of the algorithm
will be a binary string, or not measured - in this case, the algorithm can be used as a
subroutine, embedding it in other algorithms. Often the drawings of the algorithms are
similar, which allows you to parameterize a set of algorithms using the number n - the
number of wires that matches the amount of RAM, and call such a set a single algorithm.
In this case, the complexity is determined as above.

Instead of depicting the algorithm with a drawing, you can represent it with the words:
��rst we do this and that with the �rst and second qubits, then we do this and that with the
third, etc.� Note that some of the gates can be an oracle-a gate with many variables that
implements some �xed unitary operator, so we have actually de�ned quantum computing
with an oracle. Its complexity is determined verbatim in the same way as above.
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Figure 30: Quantum teleportation between two Canary Islands

We will analyze only one fast quantum algorithm found by Lov Grover in 1996 (see
[12]) - the GSA algorithm (Grover search algorithm). This algorithm contains a minimal
number of details, and therefore it can clearly show the most important property of
quantum dynamics - the ability to concentrate the amplitude on individual states, and
those that are not known in advance. The speed of such concentration is extremely high,
so that this process cannot be reproduced on a classic computer.

GSA is a fundamental quantum algorithm. It can serve as a model of complex processes
at the quantum level, which will be discussed in more detail. The transformations of the
amplitude of quantum states in the computation by this algorithm will also be considered
there. Here we will describe the GSA from the �external� side, in terms of the Hilbert
formalism. This description is short and beautiful, and therefore we will start with it.

Let be a Boolean function f of n variables, and the equation

f(x) = 1 (35)

has exactly one root xtar, which we need to �nd by referring to the function f the least
number of times. If we had a classical computer, the number of such calls would be at
least N = 2n in order of magnitude, since this is a classic iterative problem in which there
is no better way to �nd the answer than by directly iterating through all possible options
- all Boolean n - strings. This is obvious if f is given to us in the form of a �black box�; if
we have an explicit scheme of functional elements that calculates f , the need for iteration
is not strictly proven, just no faster method for �nding a solution (35) has yet been found.

On a quantum computer, we can �nd xtar for [π
√
N/4] calls to the function f . If we

have a classical device that calculates f(x) for any x ∈ {0, 1}n, we can make a quantum
algorithm from it that computes a function of the form
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Figure 31: Re�ection of the space along the vector |a〉.

fquant : |x, y〉 → |x, f(x)⊕ y〉 (36)

We will demonstrate the idea of such a construction using the example of the simplest
identical function I : |x〉 → |x〉. Then Iquant is called CNOT and acts as CNOT |x, y〉 =
|x, x⊕y〉. It can be shown independently for various quantum computer technologies that
such a unitary operator can theoretically be implemented in any of the technologies; for
details, the listener can refer to the archive of preprints. We will show how to implement
CNOT gate on the optical cavities in the following lecture.

The re�ection of the space of quantum states along the vector |a〉 is called a mirror
re�ection with respect to a subspace orthogonal to |a〉:

Ia|b〉 =

{
|b〉, åñëè 〈a|b〉 = 0,

− |a〉, åñëè |a〉 = |b〉 (37)

The map de�ned in this way continues linearly over the entire space; we will denote this
continuation with the same symbol Ia.

The re�ection is graphically depicted in the �gure 31.

Having the operator fquant, which acts on all linear combinations of basis states, and
not only on one basis state, as in the classical case, we can construct the re�ection operator
Ixtar along the vector |xtar〉, although this vector itself is unknown to us. To do this, we
introduce an ancilla (auxiliary qubit), initializing it with the state |anc〉 = 1√

2
(|0〉 − |1〉),

and apply the operator fquant to the state of the form |Ψ〉|anc〉. It follows from the
de�nitions that the state Ixtar |Ψ〉|anc〉 will be obtained and the ancilla can be thrown
out without fear of spoiling the current state, since the ancilla, which played its role in
introducing a minus at the base state |xtar〉 in the superposition |Ψ〉, is again not entangled
with the main array of qubits.

An important remark should be made here. If we initialized the ancilla with the state
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|0〉, and then performed the transformation fquant, in order to then change the sign at
xtar with the operator σz applied to the ancilla (which would be natural in a classical
computer), this would create, generally speaking, an entangled state between the main
array of qubits and the ancilla, and it would be impossible to simply throw out the ancilla:
its measurement would lead to irreversible damage to the ground state, and we would not
get would be Ixtar |Ψ〉 as a result. Here it would be necessary to apply fquant again, so
that the ancilla would again switch to a separate state |0〉, that is, for one inversion along
|xtar〉, we would spend two calls to the function fquant instead of one with non-trivial
initialization of the ancilla; with such initialization, the change of the desired sign in the
linear combination at the input occurs with simultaneous cleaning of the ancilla.

Let's construct a state of the form |0̃〉 = 1√
N

N−1∑
j=0

|j〉 - this can be done by performing

the Hadamard transformation

H =

(
1/
√

2 1/
√

2

1/
√

2− 1/
√

2

)
(38)

on each qubit in the state of the main array n is a qubit |0̄〉 = |00...0〉, where all qubits
have the value |0〉 (prove it!). Otherwise, such an operator can be written as the tensor n -
th degree of the operator H; it is also called the Walsh-Hadamard operator: WH = H⊗n.

The listener can try (this is optional) �nd out the general form of the matrix element
of the operator WH: wi,j. Note: it is necessary to use the qubit representation of the
natural numbers i and j.

Next, we have already seen how to implement the To�oli gate T : |x, y, z〉 → |x, y, xy⊕
z〉 on any quantum computer technology on which CNOT can be implemented (it can
be shown that T is expressed in terms of CNOT and single-qubit gates).

Let's show how to perform the transformation I0̄.

Consider the operator R, which is implemented by an array of gates, shown in the
�gure 33. Let's create an additional n ancilli initialized with zeros, and number them with
natural numbers 1, 2, ..., n. and another additional qubit, which we will call the result res.
We will perform the transformation of R sequentially over x, y, z, which are: i - th qubit
of the main array, i - th qubit of the ancilla and res, respectively (see �gure 32). Then
we will apply −σz(res) to change the sign. The �nal value of res will be 1 if and only if
x 6= 0, that is we change the sign just for the state x = 0. For mandatory cleaning of the
ancilla, we will perform all the described transformations in reverse order to make ancilla
non entangled with the main register.

Now we can also realize I0̃, noting that I0̃ = H⊗n I0̄ H
⊗n.

After that, we will make consecutive applications of the operatorG = −I0̃Ixtar , starting
with |0̃〉 [π

√
N/4] times. We will show that the result will coincide with |xtar〉 with high

accuracy. Indeed, the entire evolution of the state vector of the n - qubit system will
occur in the real two dimension space generated by of two almost orthogonal vectors |0̃〉
and |xtar〉, and G will invert the orientation of this two-dimensional real space twice. So,
G is its rotation by a certain angle β, which can be found by following a single point, for
example, the end of the vector |0̃〉. It is easy to show (do it!) that β = 2 arcsin(1/

√
N).
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Figure 32: Sequential application of R - each application with the simultaneous shift of
arrows

Figure 33: A scheme that implements the R operator. Its main property is: mapping
|000〉 → |000〉, |100〉 → |111〉, |101〉 → |101〉, |001〉 → |011〉.
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Figure 34: The work of the GSA is consecutive turns at an angle 2 arcsin(
√
l/N).

Now from the high-precision equality α ≈ arcsin(α) follows the desired equality

|xtar〉 ≈ Gτ |0̃〉,

which is exactly what was required.

The work of the GSA is shown in the �gure 34

So, Grover's quantum algorithm requires about
√
N calls to the oracle, that is, it

speeds up the calculation of an unknown solution (35) at a level inaccessible to any classical
computer. It can be shown (see [4]) that this algorithm is optimal in the following exact
sense. Any other algorithm that works signi�cantly faster will give an incorrect answer
for the iterative task (35) for the vast majority of functions; we will show this further.
For the search problem each quantum algorithm working faster than O(

√
N) must give

the wrong answer for the majour part of black-box functions f ([13]; see also [14], [15]).

If the equation (35) has several solutions: x1, x2, ..., xl, then exactly repeating the GSA
scheme, only taking τ = [π

√
N/l/4], we will get a good approximation of the state |Xtar〉 =

1√
l

l∑
j=1

|xj〉, after which the measurement will allow us to �nd one of the xj. Check this

fact, making sure that all the arguments are preserved, only xtar should be replaced with
Xtar with the appropriate time correction τ .

If l is unknown to us (practically an important case), we can iterate the GSA scheme
by performing τs GSA operations for τs = 2s, sequentially, for s = 1, 2, ... (see �gure 35).
Show that the number of steps of such an iterative application of GSA will have the order
of O(

√
N/l), that is, the root of classical time. This is the maximum possible quantum

speedup for most classical algorithms with an unlimited calculation length - we will show
this below; if we consider short classical algorithms, in most cases they cannot be speedup
even by one step on a quantum computer (see [4]).
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Figure 35: It is su�cient to get to the good area on the circle

4.1 A continuous version of Grover algorithm

Grover algorithm has a continuous version, when the �nal state |xtar〉 = |w〉 is obtained
as a unitary evolution of the state vector in a two-dimensional subspace generated by the
vectors |w〉 and |0̃〉 under the action of the Hamiltonian

H +
1√
2

(|0̃〉〈0̃|+ |w〉〈w|)

where |0̃〉 = 1
N

N−1∑
j=0

|j〉. We have: 〈0̃|w〉 = α = 1√
N
. The matrix of the Hamiltonian H

in the standard basis has the form

|w〉〈w| =
(

0 0
0 1

)
, |0̃〉〈0̃| =

(
cos α
−sin α

)(
cos α −sin α

)
=

(
cos2 α −cos α sin α

−cos α sin α sin2 α

)
.

Finding the eigenvalues of the energy H, we get E1,2 = 1√
2
± sin(α/2), so that the

di�erence between the main and excited levels is 2 sin(α/2), which is equal to α with
great accuracy. From here, solving the Schrodinger equation for H, we get that in the
time of the order of

√
N from the state |0̃〉, evolution will lead us to the state |w〉, that

is, the continuous version of the Grover algorithm gives the same spedup of the classical
calculation as the standard version.
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Figure 36: The quantum spedup of the classical computation of xtar is obtained if the
quantum search time is less than the classical one: tquant < tclass.

4.2 Quantum spedup of classical computations and its limits

Quantum spedup of classical computatins is obtained if the search time for solving
a problem on a quantum computer is less than the same time on any of the classical
algorithms (see �gure 36).

In short, the quantum speedup of computations consists of this. Let we have some
abstract quantum computer in which the evolution exp(− i

h
Ht) is implemented under our

control over the Hamiltonian H. Can we use such a device to predict the future of an
arbitrary classical system? And if so, how fast? This question, in essence, reduces the
most important problem of verifying the fact that someone built a quantum computer,
and did not fake its work with the help of a supercomputer hidden in the basement.

This is what is called the quantum speedup of classical computing. We will show that if
we understand by a classical system a speci�c function f : K −→ K from the con�guration
space to itself (the law of classical evolution), then the answer to this question will depend
on the time interval t at which we consider the prediction. If we do not impose any
restriction on t, then the quantum time will have an order of not less than the square
root of the classical one, that is, the quantum speedup for most classical problems will
not exceed Grover's - for brute force.

If we demand that the time t be su�ciently small (compared to the number of all
possible computer con�gurations), we will get a completely surprising fact: a quantum
computer will spend the same time on modeling as classical evolution itself (see [4]).

Quantum Achilles may not catch up with the classic turtle !

We will show how the lower bound is set to the square root of classical time for the
quantum complexity of �nding the result of iterations of the classical oracle. Note that
such results show the fundamental limits of the speed of the �quantum Achilles�; they
cannot be overcome by any improvement of its structure.

So, the classical evolution is represented as an iteration of some function f , so it has
the form
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Figure 37: Quantum Achilles and the classical Turtle

x0 −→ f(x0) −→ f(f(x0)) −→ . . . −→ fk(x0) −→ . . . −→ fT (x0),

where in fk(x0) is denoted by k - a multiple iteration of f . The value of x0 does not play
any role in this case, so we just write fk.

A quantum computer, our Achilles - see �gure 37, has the function f at its disposal,
and can use it as a quantum oracle Quf : |x, y〉 −→ |x, y⊕ f(x)〉. All the words fk belong
to the basis states of the quantum Hilbert space, so any of these words can be substituted
for x or y. So, we can assume that fk belong to the basic states of our computer. Then,
after properly grouping several consecutive operations in the computation, we can assume
that each such state e calls the oracle f on some word q(e) from the same set (grouping
is necessary so that there is exactly one query state in each group).

We can group elementary operations as we like; we only need the unitarity of all
quantum transitions, which is used in further inequalities. Then the probability that the
quantum state

|Ψ〉 =
∑
j

λj|j〉

of our Achilles calls the oracle f on the word a, can be found by the formula

δa(Ψ) =
∑

j: q(j)=a

|λj|2,

resulting from the Born rule. We put da(Ψ) =
√
δa(Ψ).

The whole speed of Achilles is in this parallelism! He can catch up with the Turtle - a
classic computation - only due to the fact that the oracle asks for all the words at once,
and not just one, like Turtle. But let's see what he can do?

How to determine the di�erence between the two strategies of the classical Turtle: the
functions f and g, which determine the classical dynamics? The most natural thing is to
generalize the de�nition of da(Ψ), and de�ne the distance between the Turtle strategies
as
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Figure 38: Computations with two oracles

dΨ(f, g) = [
∑

a: f(a) 6=g(a)

δa(Ψ)]1/2.

It immediately follows from this de�nition that

‖Quf (Ψ)−Qug(Ψ)‖ ≤ 2dΨ(f, g). (39)

In this assessment, there is a weak side of Achilles. The oracle query operator Quf is
unitary, and this relates the quantum velocity. Since we are analyzing the capabilities
of a quantum computer in relation to all classical ones, our Turtle can use, so to speak,
a deceptive move. What happens if you change the value of f on only one word? It is
clear that this, in most cases, will also change the value of the �nal state of fT . But will
our Achilles be able to catch the substitution? If his quantum states di�er a little when
working with these two oracles, he will not be able to distinguish them when measuring,
and will be deceived! The illustration is shown in the �gure 38.

Let's consider two ways of Achilles: with the oracle f and with the oracle g, respec-
tively:

Ψ0 −→ Ψ1 −→ . . . −→ Ψt,
Ψ′0 = Ψ0 −→ Ψ′1 −→ . . . −→ Ψ′t,

(40)

Let f act the same everywhere, except for one word a, on which f(a) 6= g(a). From
the inequality (39), a simple induction on t directly establishes that

‖Ψt −Ψ′t‖ ≤ 2
t−1∑
i=0

da(Ψi). (41)

Now we need to choose a so as to give Achilles the maximum inconvenience. Let's
de�ne the matrix

aij = δfj(Ψi), i = 1, 2, . . . , t; j = 1, 2, . . . , T.
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Here t is the Achilles time, and T is the Turtle time; T/t is the quantum spedup coef-
�cient. How are these times related? The maximum inconvenience for our Achilles will

be delivered by this choice a = f τ , where τ is chosen so that
t∑
i=1

≤ t/T . This is possible

because the sum of matrix elements for any row is equal to 1 - this is the full probability;
therefore, the sum of all elements in general will not be greater than t. Now we have

‖Ψt −Ψ′t‖ ≤ 2
∑
i

√
aiτ ≤ 2

√
t
∑
i

aiτ ≤ 2t/
√
T .

The second transition here follows from the inequality between norms in the spaces l1 and
l2, the proof of which we provide to the reader as an exercise. We see that if t = o(

√
T ),

then Achilles has lost, because he will not be able to distinguish the position of the classical
Turtle fT from others. That is, it is impossible to obtain more than a quadratic quantum
spedup for most classical algorithms.

There are also lower bounds of a di�erent type of quantum complexity. For example,
they establish that a quantum computer cannot solve an iterative problem signi�cantly
faster than using Grover's algorithm (see [14], [15]), and also that any quantum algorithm
faster than Grover's must give an erroneous answer for almost all iterative problems (see
[4]).

A more detailed consideration of the quantum computation ([4]) shows that Achilles
in most cases is not able to catch up with the Turtle of a classical computer at all.

Theorem ([4]).

The probability that an iteration of the length O(N1/7) arbitrarily selected from the
uniform distribution of the �black box� F can be spedup by at least one on a quantum
computer tends to zero with the dimension of the space tending to in�nity .

Thus, the quantum speedup of classical calculations is a rare phenomenon. It is the
case for algorithms of the brute force type, the ones that allow speedup by parallelization
(see [16]). The iteration-type problem we have considered belongs to the GMSP type (see
[17]) and in general does not allow this type of speedup; for it, a quantum computer is,
in the vast majority of cases, no better than a classical one.

This is an indirect evidence that quantum and classical parallelism are close to each
other. This reinforces the con�dence that the attempts to �nd some forms of deterministic
description of quantum evolutions, which we undertook in the further lectures, are not
just mathematical exercises.

5 Lecture 5. Discretization of functions and operators

To realize the main purpose of a quantum computer-modeling of real micro processes,
we need to learn how to move from their standard, analytical description to a discrete one.
In Copenhagen quantum mechanics, the state is described by the wave function Ψ(x, t),
for which the Schrodinger equation i~Ψ̇ = HΨ is valid, where H is a continuous energy
operator,which for a single particle in ordinary space (x, y, z) has the form
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H =
p2

2m
+ V (x), p =

~
i
∇, ∇ = grad =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(42)

where p is the momentum operator of the particle, V is the potential in which it moves.

The main stage is the representation of the so-called wave function to the state vector.

If there is an abstraction - a wave function Ψ(x) from a continuous variable x can be
made realistic if we enter a discrete set of possible values of the variable x = x0, x1 =
x0+dx, x2 = x0+2dx, ..., xN = x0+Ndx, and then represent an approximately continuous
function Ψ(x) as follows

Ψ(x) ≈
N−1∑
j=0

Ψ(xj)dj(x), (43)

where dj(x) is the characteristic function of the j - th segment [xj, xj+1], j = 0, 1, ..., N−1
(see �gure 39). Given the scalar product of continuous functions 〈f |g〉 =

∫
R

f̄ g dx, we can

renormalize the orthogonal vectors dj by obtaining an orthonormal basis |j〉 = dj/
√
dx,

and de�ning λj = Ψ(xj)
√
dx, we come to the representation of our function as a state

vector (110). For a wave function de�ned on the space R2 or R3, instead of
√
dx, there

will be
√
dx2 or

√
dx3, respectively.

The transition from discrete to continuous recording consists in the fact that all sums
are replaced by integrals, and summation variables are replaced by integration variables.
For example, the formula (43) will turn into Ψ(x) =

∫
R

Ψ(y)δy(x)dy where δy(x) is the limit

of the functions dj(x) for dx→ 0, so that xj → y. Such a limit, of course, does not exist
in mathematical analysis - among ordinary functions, since at dx→ 0, the function dj(x)
will turn into a needle in�nitely high and in�nitely thin. This is the so-called generalized
Dirac function.

This procedure of discretization will always be kept in mind by default. Moreover,
performing a linear transformation of the D coordinates of x, which is equivalent to choos-
ing new units of length measurement, we can assume that the segment of the de�nition
of the wave function [x0, xN ] coincides with the segment [0, 1], and N = 2n, so that
xj = j/N, j = 0, 1, ..., N − 1 and we will write the approximate,with an accuracy of
1/N , the value of the coordinate x in the form of a sequence of binary signs of the binary

expansion j =
n∑
k=1

2n−kek, that is, as a binary string |e1e2...en〉, ek ∈ {0, 1}.

Any such string is the basic state of a system of n qubits (quantum bits), so we will
call this discrete representation of wave functions a qubits representation. In the qubits
representation, the wave function will have no physical dimension. Only the D operator
of the transition to the qubits representation from the physical continuous function Ψ(x)
will be dimensional, and the basis states |j〉 will have the physical dimension.

The listener is invited to practice using natural numbers in binary notation: enumer-
ate, add, multiply and divide. If it is true that Nature speaks to us in the language of
mathematics, then the basis of this language is precisely operations with integers in binary
notation .
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Figure 39: Discretization of a continuous function .

5.1 Physical quantities as observables

Any physical quantity, except time, corresponds to a certain observable in quantum
theory. In this case, the eigenvalues of this observable will be the possible values of this
value, and the eigenstate in which it has this value is the state in which this value is
uniquely determined - precisely by this value.

Consider three examples: observation of the coordinate, impulse and energy.

5.2 Observation of the coordinate

We will consider only the case of a one-dimensional particle, generalization to the
three-dimensional case is not particularly di�cult. The observable will be the operator
of multiplying the wave function by its argument-coordinate, which in the continuous
representation has the form: x : f(x) → xf(x). Remembering the transition (43)
from a continuous representation of the state vector to a discrete one, we can directly
check that in the qubits representation the matrix of the coordinate operator is diagonal,
and the arithmetic progression 0, 1/N, ..., (N − 1)/N is diagonal. We will denote this
matrix by xdiscr. Thus, the eigenstates of this operator will be the basic states of the
n - qubit system, which we have agreed to denote by binary expansions of the natural
numbers |0〉, |1〉, ..., |N − 1〉, and we will identify them with these numbers themselves
when writing. Their eigenvalues will be the numbers themselves 0, 1/N, ..., (N − 1)/N .
These basic states, by de�nition, constitute the orthonormal basis of the space CN of the
system of n qubits.

In continuous form, they correspond to the so-called Dirac delta functions δλ, which
are de�ned as linear functionals of the form δλ : f → f(λ). These functionals are not
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Figure 40: The eigenfunction of the coordinate operator. Discrete form

ordinary functions, their geometric representation is in�nitely high needles growing from
points λ. They cannot be normalized, they cannot be multiplied by each other. This is
another example of how mathematical analysis comes into con�ict with quantum physics.
The contradiction arises due to the continuous nature of the variable x; as soon as we
carry out the discretization, this contradiction will disappear, and the �needles� will turn
into high steps δj(x) of a �nite value 1/

√
dx where dx is the selected grain of spatial

resolution (see Figure 40).

The element of the discrete space CN will be the state vectors |Ψ〉 of the form (110),
and the conjugate space of linear functionals will consist of strings of the form 〈Ψ| acting on
states in a natural way: 〈Ψ| : |Φ〉 → 〈Ψ|Φ〉, which makes the state space CN isomorphic
to the conjugate (which is violated in the case of continuous formalism).

Discretization removes all contradictions between physics and the mathematical ap-
paratus, and therefore we will always talk about �nite-dimensional spaces, even using
integration and di�erentiation as approximate calculation techniques; we will always con-
trol such techniques for the absolutely necessary possibility of discretization.

5.3 The quantum Fourier operator and the observation of impulse

The quantum impulse operator in the one-dimensional case has the form in the con-
tinuous formalism

p : f(x)→ ~
i
∇f (44)

Its eigenfunctions are complex exponents exp(ipx/~), with eigenvalues of p.

Prove that this operator is Hermitian using the equivalent de�nition of the Hermitian
matrix A: 〈i|A|j〉 = ¯〈j|A|i〉 (the dash denotes the complex conjugation); apply the formula
for calculating the scalar product through the integral.

To construct a correct discrete form of the impulse operator, one should use the Fourier
transform,
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f(x)→ 1√
2π~

∫
R

exp(−ipx/~)f(x)dx = φ(p) (45)

by converting the (44) functions to Dirac delta functions, as well as by the inverse Fourier

φ(p)→ 1√
2π~

∫
R

exp(ipx/~)φ(p)dp = f(x) (46)

making the reverse transition.

The listener is invited to verify this by accepting the simplifying equation ~ = 1, which
is achieved by switching to a suitable system of physical units. Substitute the proper func-
tion of the impulse operator fp0(x) = eip0x/~ into the formula(45), and perform integration
over a �nite interval of the form (−A,A). The integral is taken in a �nite form, and the
result for A → +∞ will more and more resemble a needle resting on the point p = p0,
and going inde�nitely to in�nity. Thus, the eigenfunction of the impulse operator will be
translated into the eigenfunction of the coordinate operator; the name of the arguments
x or p does not play any role. Do the same with the reverse transformation. But when
integrating along the entire straight line, divergence will result; moreover, neither the delta
function nor the complex oscillation exp(ipx) can be normalized. Everything is corrected
only by switching to a discrete representation.

The discrete form of the Fourier transform and its inverse is represented by operators
acting on the basis states of an n- qubit system as follows:

QFT : |c〉 → 1√
N

N−1∑
a=0

exp(−2πiac/N)|a〉

QFT−1 : |a〉 → 1√
N

N−1∑
c=0

exp(2πiac/N)|c〉
(47)

Both of these are mutually inverse operators (prove!) with a linear extension to the
entire space of quantum states, CN will give unitary operators - Fourier and inverse to it.

For applications, it is convenient to assume that for the variable a, the number a/
√
N

is the coordinate belonging to the segment [0,
√
N ] (Planck's constant can be considered

a unit in the proper system of units). Then c/
√
N must be associated with the impulse.

It is natural to assume that the impulse belongs to the segment [−
√
N/2,

√
N/2], since

a particle located on the segment [0,
√
N ] can move in both directions. Therefore, the

impulse should be equal to
√
N(c/N − 1/2).

Accordingly, the discrete form of the impulse operator will be the N - dimensional
Hermitian operator pdiscr = QFT−1

√
N(xdiscr−I/2)QFT = A−1QFT−1

√
NxdiscrQFT A,

where the diagonal operator A = diag(exp(πia))a=0,1,...,N−1. Its eigenvectors will have the
form A−1FT−1|a〉 of the form (47) and their eigenvalues will be numbers

√
N(a−1/2); a =

0, 1/N, ..., (N − 1)/N .

So, in the discrete representation, all the eigenstates of the main operators are normal-
ized by one, and there are no contradictions with mathematical analysis. Here we used
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Figure 41: Implementation of QFT−1 in the form of an array of quantum gates.

the analytical technique of continuous Fourier transforms to correctly write its discrete
analog. It is not di�cult to show that all the useful properties of the Fourier transform:
the transition from di�erentiation (application of the impulse operator) to multiplication
by an argument, as well as the identi�cation of the hidden period of the complex exponent
will be preserved during the transition from a continuous form to a discrete one, so that
we can use discrete operators in �nite-dimensional spaces in all physical problems related
to quantum theory.

The operators (47) are called direct and inverse quantum Fourier transforms. With
their help, it is possible to build a polynomial quantum algorithm that �nds the decom-
position of a number into non-trivial factors ([18]).

5.4 Implementation of the quantum Fourier transform on a quan-

tum computer

Let's agree to represent an integer of the form a = a0 + a02 + . . . + al−12l−1 with the
base state |a0 a1 . . . al−1 〉 and place all aj from top to bottom. We will accept the same
agreement for the output, only the binary signs bj of the number b = b0+b02+. . .+bl−12l−1

will be written in reverse order-from bottom to top.

The quantum algorithm implementing QFT−1 is represented at the Figure 41. The

64



circles here denote the transformation W 1, two-qubit operations have the form:

Uk,j =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 eiπ/2
k−j

 , k > j. (48)

To make sure of this, we will consider the amplitude of the transition from the basic
state a to the basic state b. This concept is legitimate, this is the name of the corre-
sponding element of the matrix of the operator under consideration. Here we will have
to be patient - the calculation is ideologically simple, but it requires some tedium. First,
we note that the modules of all such amplitudes are the same and, as in the inverse
Fourier transform, are equal to 1/2l/2, so we only need to monitor the phase shift, i.e.,
the argument φ of the complex amplitude eiφ. We will account for this phase incursion
by summing the contributions from Walsh transformations with the contributions from
two-qubit phase shifts.

To simplify the calculation, we will introduce the following abbreviated notation: b′j =
bl−1−j, j = 0, 1, . . . , l− 1 - this will be necessary in order to take into account the reverse
order of the binary digits in a and b at the right time. Let's imagine how the states change
when moving from left to right along the wires of our circuit. Actually, the transition
from a to b occurs only when performing the Hadamard operation, two-qubit operations
do not change the diagonal and basic states, adding only the terms to the phase.

The contribution from the Hadamard operation will be as follows: πajb
′
j. This number

is not equal to zero only if both the j digits of our input and output numbers are equal to 1,
which exactly corresponds to the de�nition of the Hadamard transform. The contribution
from a two-qubit operation for j < k will be πajb

′
k/2

k−j, because the state of a changes
to b only when the Hadamard device passes, and as can be seen from Figure 41, such a
two-qubit operation is performed at the moment when the j-th qubit is still in the state
of aj, and k - th is already in the state of b′k. Summing up all these terms of the phase
shift, and taking into account that an integer multiple of π can not be taken into account
at all, we get this:

π
∑

l>k>j≥0

ajb
′
k

2k−j
+ π

∑
l>j≥0

ajb
′
j =

2π
∑

l>j+k≥0

ajbk2j+k

2l
=

2π
∑

l>j,k≥0

ajbk2j+k

2l
+ 2πZ =

2π
2l

∑
l>j≥0

aj2
j
∑

l>k≥0

bk2
j + 2πZ = 2πZ + 2π

2l
.

(49)

where Z is integer and the addition of 2πZ to the phase does not change the complex
number. This is exactly what is required in the de�nition of the inverse Fourier transform.
If we need to perform a direct transformation, it is enough to reverse the order of the
functional elements in the scheme under consideration and put a minus sign before the
phase shift in the de�nition of two-qubit operations.

Now let's look at what we just did. The scheme we have constructed that implements
the Fourier transform contains about l2 functional elements. Note that if we do not chase
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the accuracy of this transformation, it will be possible to discard all two-qubit operations
that involve qubits that are too far apart from each other. Indeed, the denominator in
π/2k−j for them makes the entire fraction negligible, the exponent will be almost one,
i.e. such transformations are almost identical and they can be discarded. The scheme
will then be much simpler - its size will generally be linear-of the order of C l, where the
constant C will, of course, depend on the accuracy we have chosen.

5.5 Zalka-Wiesner algorithm

The GSA algorithm, which we have studied, operates with qubits, converting their
classical (basic) states into quantum ones using the Hadamard operator. This technique
illustrates the most important features of the description of evolution at the quantum level,
but with a great loss of accuracy. A real particle can occupy several classical positions,
not only two, like a qubit.

We will consider the algorithm Z for modeling quantum unitary evolution proposed
in [19] (see also [20]), which actually generalizes the GSA to the case of many classical
states of each particle. In it, instead of the Hadamard operator �smearing� the amplitude
over two possible qubit states, the wave function of a particle capable of being in many
classical spatial states is calculated at each step.

The Z algorithm di�ers from the direct solution of the Schrodinger equation on a
classical computer only in that the amplitudes λj of the current quantum state |Ψ(t)〉
are not calculated directly, but are modeled by the quantum dynamics of qubits in a
discrete representation |j〉 = |0〉, |1〉, ..., |N − 1〉 of the space of classical states in the
computational memory of n qubit, N = 2n, in which the wave function is represented as

|Ψ(t)〉 =
N−1∑
j=0

λj|j〉.

Recall that the real one-dimensional space of classical states is �rst translated by a
linear transformation D into a segment [0,

√
N ], which is then discretized by a qubit rep-

resentation of numbers with an approximation accuracy of 1/
√
N : xk ≈ k/

√
N, k =

0, 1, ..., N − 1. Such a representation of the wave vector requires an appropriate dis-
cretization of the operators. The discrete form of the coordinate operator xdescr and the
momentum operator pdiscr was considered in the section 5.3.

In this case, the potential energy operator V becomes a diagonal matrix

diag(V (x0), V (x1), V (x2), ..., V (xN−1)),

with potential energy values on the main diagonal, a diagonal representation of the ki-
netic energy operator (in the space of its own eigenvectors of the momentum operator)
also diagonally: Kdiag = diag(−~2p2

0/2m),−~2p2
1/2m),−~2p2

2/2m), ...,−~2(pN−1)2/2m)),
where pk =

√
N(xk−1/2), so that in the coordinate basis the kinetic energy is represented

by the operator

K = A−1QFT−1 Kdiag QFT A, (50)

where A = diag(exp(πia))a=0,1,...,N−1.
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Then the part of the evolution corresponding to the potential energy operator
exp(−iV t/~) in the simple form of the potential will be implemented as a quantum sub-
routine, the quantum Fourier transform can also be implemented according to the Shor
scheme, that we have considered above, and the operator corresponding to the kinetic en-
ergy and time t can also be implemented as a quantum subroutine. Applying the Trotter
approximation

exp(A+B) ≈ [exp(A dt) exp(B dt)]t/dt,

we will get an algorithm for computation the evolution Z in the form:

Ut = exp(− i
~
Ht) ≈ [exp(− i

~
K dt) exp(− i

~
V dt)]t/dt (51)

We obtain a model of unitary dynamics with quadratic deceleration compared to the
real process. Prove this by using the exponential expansion to the �rst order by dt. Fix
the order of the error ε = const and, using the accuracy of the Taylor approximation
for the exponent, set the number of operations necessary to �nd the approximation of the
resulting state. This number will be equal to t/dt, which will result in a quadratic time
dilation compared to the time t of the real process.

The Z algorithm can be generalized to the case of several particles. In this case, the
Fourier transform must be applied for each coordinate of each particle separately. This
algorithm requires memory that grows proportionally to the �rst power of the number of
real particles, but cannot be used to control a complex system, since it assumes a priori
modeling of the process with the transfer of the result to a new similar process, whereas in
reality any complex process is not exactly reproducible, and therefore its control requires
modeling in real time.

Comparing this computation with the computation using the GSA algorithm, which
has the form Gτ = (−I0̃Ixtar)

τ , we see a complete analogy with the formula (51). In this
case, the role of the Walsh-Hadamard operator in the representation of I0̃ = WH ·I0̄ ·WH
is played by the quantum Fourier operator in (50). For a single qubit, the Fourier operator
just coincides with the Hadamard operator, and Walsh-Hadamard operator is the zero
level approximation of QFT (see the implementation of the Fourier operator). So Z
algorithm can be considered a generalization of the GSA for the case of many classical
states of each of the particles.

So, we see that there are two methods of ultra-fast, inaccessible to a classical com-
puter, concentration of the amplitude on the target unknown state. The �rst is the GSA
algorithm, the second is the quantum Fourier transform. The fast Shor integer factor-
ization algorithm actually uses the same fundamental features of quantum dynamics as
GSA. The arsenal of quantum methods for speedup classical computations is thus limited
to these general methods of ampitude concentration for problems of the search type, in
accordance with the general result [4]. In problems that are not spedup by parallelization,
the quantum computer does not show any advantages over the classical one, except only
for its amazing property of non-locality.
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5.6 Revealing hidden periods with QFT

We recollect the de�nnition of QFT and its conversion:

QFT : |a〉 −→ 1√
N

N−1∑
b=0

e−
2πi ab
N |b〉, QFT−1 : |a〉 −→ 1√

N

N−1∑
b=0

e
2πi ab
N |b〉. (52)

We now can demonstrate how this transform can reveal hidden periods. We introduce
one notion playing the important role in the quantum computing. This is the conditional
application of an operator. The idea consists in the following. Let we are given a unitary
operator U . For the obviousness, we can assume that it is given in the form of scheme
of functional elements, though it is not necessary. Further, let we have some auxiliary
quantum register consisting of several qubits, which we call controlling. The aim is to
apply the operator U sequentially so many times as is written in the controlling register
that is the natural generalization of the operator �conditional U�, de�ned earlier. We
wrote the conditional U formally in the form:

Ucond : |x, α〉 −→
{
|U x, α〉, if α = 1,
|x, α〉 if α = 0.

We will not discuss the question of the realization of this transform now. We only note that
if the operator U is determined as the scheme of functional elements, we can easily build
the scheme of the same type realizing Ucond. For this it is su�cient to make conditional
each operator contained in this scheme. We leave the details for the listener.

We then can introdue the further generalization of Ucond - the operator Useq:

Useq|x, α〉 = |Uα x, α〉
Its implementation can be ful�lled by the simple algorithm, which takes the digit �gures
of α and applies conditionally the sequence of U corresponding to the degree of the digit
- for every digit. We propose the detailes for the listeners.

We now take up the important problem of the �nding of eigen frequencies of the
operator U .

Eigenvalues of U have the form exp(2iπwk), where wk ∈ [0, 1), we call wk the frequency
corresponding to the kth eigenvalue. This frequency will result from the measurement of
some special register from n qubits denoted by α, in which we store the sequential binary
�gures of this frequency, with the limited accuracy. We suppose that the real frequency
can be written in this register with the absolute accuracy, it is not important for the
general scheme we describe. That is we suppose that for every k wk has the form

wk =
ck
N

(53)

for some natural ck ∈ {0, 1, ..., N − 1}. The listener who is interested in the general case,
we address to the book [21]. Our computer thus works with two registers: the register of
the argument of the operator U , and the register of the value of its eigen frequency. The
initial state we choose |ξ, 0̄〉, where ξ =

∑
k

xkψk, and ψk are eigen states of our operator

U , corresponding to the eigen frequencies wk.
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The central trick for the revealing of the eigen frequencies is the operator, which was
introduced by Shor for the particular case where U is the numerical multiplication, and
was generalized to the case of arbitrary unitary operators by Abrams and Lloyd. Its
de�nition is the following:

Rev = QFT2 Useq QFT2. (54)

Here Fourier transform is applied to the second register - to α. We �nd what gives
this procedure Rev as applied to our initial state |ψ〉|0〉. The �rst Fourier transform

gives the uniform amplitude distribution in the second register: 1√
N

∑
k

N−1∑
α=0

xk|ψk, α〉. The

operator of condition application of U , by virtue of that ψk are eigenvectors of U gives
Useq|ψk, α〉 = |Uαψk, α〉 = e2iπwkα|ψk, α〉, therefore, all the state after the application of the
conditional operator transforms to 1√

N

∑
k

∑
α

e2iπwkα|ψk, α〉. At last, the �nal application

of Fourier transform gives the state:

1

N

∑
k

xk
∑
c

N−1∑
α=0

e2iπα(wk− c
N

)|ψk, c〉 (55)

where wk = ck/N due to our supposition (53). If c is just the list of binary �gures of
ck = wkN , then the exponential degree is zero and we obtain after the summing on α
the sun of units of the total number N so that the coe�cient at the state with this c
will be xk. It follows from this, due to the normalizing - the sum of squared modules
of all xk is 1, that the amplitude of the basic vectors with the others c equals zero.

We can check it straightforwardly:
N−1∑
α=0

e2iπαβ = 0 when β = (ck − c)/N 6= 0. Indeed,

this is the sum of the geometrical progression with the ratio not equal 1, which sum is
(1− exp(2iπ)/(1− exp(2iπ(ck − c)/N)) = 0.

Our procedure thus results in the state∑
k

xk|ψk, ck〉,

where by ck we mean its binary notation. If we thus observe this resulting state in the
basis consisting of the eigenvectors of the operator U , we obtain as the addition to the
eigenvector the binary notation of the corresponding eigen frequency. In particular, if the
initial state ξ was eigenvector itself, we simply obtain its frequency.

5.7 Factoring of integers

The general method of �nding eigenvalues, which we represented in the previous sec-
tion, was invented by P.Shor for the particular case arising in the problem of factoring
integers. The factoring problem or the problem of decomposition of an integer number
of n digits to the integer multipliers is the famous computational problem. The known
classical algorithms for its solution require of the order ea n1/3

steps. This problem there-
fore belongs to the class of (supposedly) di�cult problems. Here we show the quantum
algorithm giving the solution of his problem. Shor algorithm was the �rst fast quantum
algorithm solving a problem of the practical signi�cance. The point is that the cryptogra-
phy protocol RSA rests on the di�culty of the factoring integers, namely the security of
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this protocol depends on the complexity of factoring problem. This protocol is used in the
numerous commercial applications, for example in the defense of the Windows operational
system.

The idea of its use is simple. Let we must check the legacy of a person, who pretends
to be a legal user of some resource. He has his own secret code of the form q1, q2 such
that q1q2 = q, where q is the publically known key. We can easily check the legacy by the
multiplication q1 to q2. But it is impossible (at the level of our current knowlegde) to get
the secret key q1, q2 given q for su�ciently large q. So, it is impossible to get a secret key
for the non authorized person, whereas the authorized user obtains the secret key from
the administrator, who generates q1, q2 at random and then make the key q = q1q2 public.

There to overcome the highest level of defense one must be able to factorize integers
with 200 decimal signs. This problem is out of the capacity even for the modern super-
computers. The quantum computer with only 1000 qubits with the frequency about 1
GHz is able to cope with this problem in a few minutes. The practical construction of
the quantum computer would mean the �nal of the modern cryptography.

Shor algorithm has also the theoretical value. It illustrates the signi�cance of the
method how Fourier transform is applied, namely the signi�cance of the auxiliary trans-
formations. The point is that the main time is spent here not to Fourier transform,
complex from the classical viewpoint, but to the multiplication of integers.

We take up the factoring problem. Let we have to �nd the nontrivial decomposition
q = q1q2 of the known natural number q to the multipliers. This task can be reduced to
the problem of the �nding of the minimal multiplicative period r of the arbitrary natural
number y modulo q: yr ≡ 1 (mod q). In a few words, this reduction looks as follows. Let
we have the method of �nding r. We will choose y randomly and �nd r. Then with the
non-vanishing probability r turns to be even. We then have yr−1 = (yr/2−1)(yr/2 +1) ≡
0 (mod q), and one of the multipliers is the divisor of q with high probability, we thus
obtain with the non-vanishing probability the factoring of the number q itself. We thus
have only to learn how to �nd r quickly given q and y. This is analogous to the �nding of
the unknown period when in place of the operator U stands the operator of multiplication
to the number y.

We take n such that 2n−1 ≤ q < 2n and will work with the quantum memory of
n qubits. We consider the following operator U : U |x〉 −→ |yx (mod q)〉, where yx
is the numerical multiplication. To make this operator acting on all our basic vectors
we agree that this equality de�nes it on the numbers less than q, whereas on the rest:
q, q + 1, . . . , 2n − 1 it acts as the identical operator. It brings the little di�culty: this
operator can be not unitary. If y and q have the common divisors, some elements will
�stick� together. To exclude this trouble we assume that these numbers are mutually
disjoint: (y, q) = 1. Since we choose y at random, then this is the case with the non-
vanishing probability. All is ready now. We can apply the powerful technique of the
quantum computing we developed earlier. Eigenvectors of U have the form either |q〉, |q+

1〉, . . . , |2n − 1〉, or 1√
r

r−1∑
j=0

exp(−2πikj/r)|yj〉 (mod q)〉 and the corresponding eigenvalues

are either 1 or exp(2πij/r). If we apply the procedure of the revealing of eigen frequencies
from the previous section, the measurement results in the number j/r1, or in [21]. If we

1in the reality we obtain the approximation of this number within O(1/N) with the high probability.
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know with the high probability the binary approximation of the fraction, it is easy to �nd
its denominator, if we assume that this fraction irreducible. The formal algorithms for
this search are based on the method of continued fractions, it can be found, for example,
in [22]. This fraction will be irreducible with the non-vanishing probability, since the all
possible j appear uniformly if we guarantee that the initial state ξ for the procedure of
revealing (see the previous section) is chosen arbitrary. We then repeat this procedure
many times, which results in the frequent appearance of values j mutually disjoint with
r and thus can �nd r itself. This is the idea of Shor algorithm.

We now come to the main thing: we estimate how good this algorithm is. As for Fourier
transform all is clear here, it is very fast, generally speaking in the linear time relatively
to the length of the notation of the number q, which we have to factorize. However,
there is the other routine operation, which threatens to eliminate all the advantages of
quantum Fourier transform. This is the operation of multiplication on the number y
containing in the operator of the conditional application Ucond. To �nd Uα we have to
multiply to y α times, which is about q actions. This di�culty in the general case of the
quantum Fourier transform application bears the principal character. It is irremovable
for the arbitrary operator U . However, in the case of factoring we are lucky: we can ful�ll
the conditional application in the time of the order log2 q. To multiply to the number yα

we will obtain the number yα by the sequential involution to the second power, beginning
with y: y, y2, y4, . . .. Of course, at each step we take the remainder from the division to
q. We thus reach the closest to y degree of two: 2l1 . We then take the quotient q/2l1 and
do the same with it, etc. We then reach y in the time of the order logarithm of q, e.g.,
in the number of steps of the order of the length of the q notation. At each step we use
about log2q actions for the computation of the multiplication of numbers by the direct
method, which results in the realization of the operator of the conditional application U
in the time O(log3 q).

It is the complexity of Shor algorithm. We see, that the most di�cult part of this
algorithm is the routine operation contained in the preparation of the input state for
Fourier transform - the sequential multiplication of natural numbers.

5.8 Solution of the problem of discrete optimization

We continue to consider the examples of problems for which fast quantum algorithms
can be obtained by some successful modi�cation or combination of the main quantum
tricks: GSA and QFT. At �rst we take up the natural generalization of the search problem:
the search of the extreme point of an integer function. Let a function f : {0, 1}n −→
{0, 1}n be de�ned by its oracle (or the scheme of the functional elements). We treat it,
as usual, as the integer function. The problem is to �nd its extreme point: maximum
or minimum. We note that in this most general formulation we cannot apply any trick
essentially simplifying the search, like simplex method or the di�erentiation. The classical
solution of this problem thus requires of the order of N = 2n actions.

The idea of its quantum solution rests on the GSA algorithm. We try to �nd the poin
of maximum by the sequential approximations. Namely, we place all argument into the
order of the growth of the function f on them: f(x0) ≤ f(x1) ≤ . . . ≤ f(xN−1). On

The details of the proof can be found (in some equivalent form) in the paper [18]
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each step j the input value will be some xjk . We apply G-BBHT algorithm with the
oracle taking the value 1 exactly on the arguments xj, for which f(xjk) < f(xj), e.g., on
xj′ , j

′ > jk. After the regular observation and the check of correctness we obtain the
following value xjk+1

etc., up to the step when we reach xN−1. The detailed analysis (see

[23]) shows that the complexity of such algorithm has the order
√
N , that gives us the

same speedup as GSA.

6 Lecture 6. Adiabatic quantum computations

So far, we have considered operational-type computations consisting of sequential ap-
plications of quantum gates. There are also continuous quantum computations called
adiabatic. They are based on a slow change in the control Hamiltonian of the qubit sys-
tem. In this case, the ground state of the original system will pass into the ground state
of the modi�ed system - this is the essence of the adiabatic theorem.

Consider the Schrodinger equation with a changing Hamiltonian H(t)

i~|Ψ̇〉 = H(t)|Ψ〉. (56)

Its solution will be the same as in the stationary case, given by the formula

|Ψ(t)〉 = exp(− i
~
H(t)t)|Ψ(0)〉, (57)

but only now the exponent should be understood as a chronological exponent. How will
its eigenstates change with a smooth change of the Hamiltonian H? If H did not change
at all, they would remain unchanged (except for the phase, of course). But if H changes,
the eigenstates pass under the action of some unitary evolution into the eigenstates of
the new Hamiltonian. What this unitary transformation will be? It turns, that this
transformation will be exactly the transformation induced by the Hamiltonian H(t), that
is, the eigenvectors evolve as the solution of Shredinger equation with ~ = 1.

It gives to Shredinger equation the higher status than the other physical laws; it
becomes the mathematical fact: its solution represent the evolution of egenstates of slowly
changing Hamiltonian. The physical will be only the constant ~.

6.1 The Adiabatic theorem

First, we consider the idea of quantum adiabatic processes, and prove a weakened
version of the adiabatic theorem.

Let us have the main Hamiltonian H0 and the target Hamiltonian H1. We want to
consider the slow change of the �rst Hamiltonian, which eventually leads to the second
one. This change is a homotopy given by the real function s(t) : s(0) = 0, s(T ) = 1,
where T is a large number, so that H(t) = (1 − s(t))H0 + s(t)H1 is the value of the
modi�ed Hamiltonian at time t.

The adiabatic theorem is that for a very small value of ∂H/∂t, any eigenstate |Φ0
k〉 of

the Hamiltonian H0 as a result of the quantum evolution induced by the Hamiltonian H(t)
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Figure 42: The deviation of the ground state from the result of a smoothly changing
unitary evolution. Direct calculation according to this scheme leads to very cumbersome
expressions. To prove the adiabatic theorem, it is necessary to cover the entire process at
once over a large time interval. Interference e�ects play a key role here - a change in the
phase of the initial state with a period of 2π/E0 and the �rst excited state with a period
of 2π/E0, and the periods also change with time! Straight lines represent the unitary
evolution induced by H(t).
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will move with great accuracy to the corresponding eigenstate |Φ1
k〉 of the Hamiltonian

H1; k = 0, 1, ..., N − 1. At the same time, the slowness of the change of H(t) means that
the maximum value of ∂H/∂t = ∂s/∂t is very small compared to the minimum energy
gap g - that is, the minimum value of the eigenergy di�erence Ek(t)−Es(t) for all k > s
and for all values of t : 0 ≤ t ≤ T . We assume that the eigenstates are non-degenerate,
so that the equality Ek(t)− Es(t) = 0 is achieved only for s = k.

A more precise analysis shows that in order to accurately approximate the eigenstates
of the target Hamiltonian by images of the eigenstates of the main Hamiltonian, it is still
necessary to impose the additional requirement, namely, it is necessary to require that
max|∂s/∂t|/g2 be a very small value.

We will not prove the adiabatic theorem in this strong form, but only show the idea
of the adiabatic theorem, and proceed to its use in quantum computations.

For convenience, we will use |n〉 = |n(t)〉 to denote the eigenstate of the Hamiltonian
H(t) with the number n, and En to denote the corresponding eigenvalue of energy, and
omit the explicit mention of time.

Let some n0 be �xed, so that |Ψ(0)〉 = |n0(0)〉.

The state of the system |Ψ〉 at the moment t obeys the non-stationary Schrodinger
equation

i~|Ψ̇〉 = H(t)|Ψ〉 (58)

and we can decompose it by the eigenstates of the current Hamiltonian: |Ψ〉 =∑
n

an|n〉, where all states and coe�cients will depend on the time t.

We have:
an(0) = δn,n0 . (59)

Substituting this decomposition into (58), we get:∑
n

(ȧn|n〉+ an|ṅ〉) = H
∑
n

an|n〉 =
∑
n

En|n〉. (60)

Now we multiply this equality on the left by 〈m| and use the orthonormality of the
basis vectors |n〉: 〈n|m〉 = δnm. The value of the summation index will be important to
us, and we will divide the sum into two parts like this:

i~ȧm + i~
∑
n6=m

an〈m|ṅ〉+ i~am〈m|ṁ〉 = amEm. (61)

Now we transform the equality H|n〉 = En|n〉 by di�erentiating it in time t and
multiplying the resulting equality by 〈m|:

Ḣ|n〉+H|ṅ〉 = Ėn|n〉+ En|ṅ〉, 〈m|Ḣ|n〉+ 〈m|H|ṅ〉 = Ėnδnm + En〈m|ṅ〉. (62)

Next, we assume that m 6= n, and given that 〈m|H = Em〈m| we get:

〈m|ṅ〉 =
〈m|Ḣ|n〉
En − Em

. (63)
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Taking into account (63), the equality (61) takes the form

i~ȧm + i~
∑
n6=m

an
〈m|Ḣ|n〉
En − Em

+ i~am〈m|ṁ〉 = amEm. (64)

From here we immediately get the di�erential equation for am:

ȧm = −am(
i

~
Em + 〈m|ṁ〉) +

∑
n 6=m

an
〈m|Ḣ|n〉
Em − En

(65)

We see that if the quotient 〈m|Ḣ|n〉
En−Em is very small for any m 6= n in absolute value, then

integrals

∆n,m =

T∫
0

an
〈m|Ḣ|n〉
En − Em

(66)

for n 6= m are very small, then the last term in (65) can be discarded, and we get the
Cauchy problem for the coe�cient am :

ȧm = A(t)am, am(0) = 0

Given the initial condition (48) and the uniqueness theorem of the solution of the
Cauchy problem, we get am = 0 for any m 6= n0.

So, if the condition ∆n,m = o(1) is met, the adiabatic approximation works well.

However, for quantum adiabatic calculations, we will need a more precise formulation
of the adiabatic theorem, which can be found in the book [24]:

Adiabatic theorem (re�ned version).

If |0(t)〉 is the ground state, and |1(t)〉 is excited state of the Hamiltonian H(t), such
that g = min 0≤t≤T, k=1,2,...,N−1|Ek − E0|, where the minimum is reached at k = 1, then
there is a constant C such that for any ε > 0 if for any t : 0 ≤ t ≤ T the following
inequalities are ful�lled: ∣∣∣∣∣〈1|Ḣ|0〉g

∣∣∣∣∣ ≤ Cε,

∣∣∣∣∣〈1|Ḣ|0〉g2

∣∣∣∣∣ ≤ Cε (67)

and |Ψ〉 - is the solution of Cauchy problem for Shredinger equation with the Hamiltonian
H and the initil condition |Ψ(0)〉 = |0(0)〉, then |〈0(T )|Ψ(T )〉|2 ≤ 1− ε2.

Thus, in comparison with our previous arguments, it is necessary to require that the
rate of change of the Hamiltonian be less than the square of the minimum gap between
the energies.

We will not strictly prove this version of the adiabatic theorem, referring the listener
to the book [24]; we will only show why it is necessary to require a small rate of change
of H greater than g2. Such a requirement does not directly follow from the form of the
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integral (66). However, let's consider a small time interval dt, at which the Hamiltonian
changes little, so that we can consider it a constant. Then the solution of the equation
(56) will be written as an eigenstate expansion of the current Hamiltonian |φi〉:

|ψ〉 =
∑
i

e−
i
~Eidtλi|φi〉 (68)

If we take the ground state, we can assume that E0 = 0 by shifting the spectrum by
E0, and then we will see that all excited states will have a coe�cient in the form of an
oscillating multiplier exp(− i

~(Ei − E0)t), so that in the case of a smooth change in the
Hamiltonian, these oscillations will result in an alternating Leibniz series, in which the
terms will almost completely reduce each other, so that the integral (66) will be reduced
to an integral over one period of such an oscillation, which is approximately O(1/g), and
the value of it will remain, in order equal to O(〈1|Ḣ|0〉/g2, that is, proportional to the
rate of change of the Hamiltonian itself H.

Consider the main integral (66), and evaluate it roughly. Let the Hamiltonian change
slowly, so that in the interval [0,∆t] it changes little, but the ground states change the
phase signi�cantly. We assume that ~ = 1. Then the states |0〉 and |1〉 - the main and
excited, on this interval - evolve in this way:

|0(dt)〉 = e−iE0t|0(0)〉, |1(t)〉 = e−iE1dt|1(0)〉, (69)

Then the numerator in the expression (66) will take the form

ei(E1−E0)t〈1(0)| ˙H(taverage)|0(0)〉 (70)

and it will oscillate with a period of the order of O(1/(E1 − E0). Suppose that the
Hamiltonian changes smoothly, so that 〈1|Ḣ|0〉 has a limited number of monotone sections.
We estimate the value of (66), taking into account the reduction in interference generated
by the oscillations of the complex exponent in (70) in the monotonicity section of the
numerator. Here we will have a Leibniz series, the sum of which is equal in order to the
highest member of the series. So the integral will be reduced to an integral over a section
of length O(1/E1−E0) from the value of the same order muliplied to coe�cient 〈1|Ḣ|0〉,
which will result in the formula (67). A graphic illustration is shown in the �gure 43.

6.2 Adiabatic form of Grover algorithm

Grover's algorithm, originally formulated in terms of quantum operations (a sequence
of gates), can also have a continuous form.

For the �rst time, this form was proposed by Farhi and Gutman. It consists of the
following. Let's say we need to �nd an unknown basic state |m〉, which we will call the
target state. We will create an initial state |0̃〉 - an arbitrary initial state that is convenient
for us to build. If we choose some functions f(t) and r(t), then the Shredinger equation
induced by HamiltonianH(t) = I + f(t)|m〉〈m| + r(t)|0̃〉〈0̃| will lead us from the initial
state to the target state in time π/(2E〈m|0̃〉). As one can see, the continuous version
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Figure 43: Interference in the deviation of the ground state from the result of a smoothly
changing unitary evolution.

of Grover's algorithm delivers the same quantum spedup of the solution of the iterative
problem as GSA.

This statement is not trivial. Indeed, the canonical version of Grover's algorithm uses
the rotation transformation U = I0̃Im, which does not reduce to the application of the
evolution induced by the Hamiltonian H, since the Hamiltonians |m〉〈m| and |0̃〉〈0̃| do
not commute.

Thus, with the adiabatic form of Grover's algorithm, everything is not so simple.

We will create the initial state |Ψ(0)〉 = |0̃〉 = 1√
N

N−1∑
a=0

|a〉, as in the GSA operating

form, and let's assume that we can create an evolution induced by the Hamiltonian
H̃(s) = (1− s)H0 + sHm, where

H0 = I − |0̃〉〈0̃|, Hm = I − |m〉〈m|

The adiabatic algorithm consists in applying to the initial state |0̃〉 a variable Hamil-
tonian H(s), where the function s(t) is such that s(0) = 0, s(T ) = 1 for a large T . The
art of adiabatic computation consists in choosing the deceleration function s(t).

Note that |0̃〉 and |m〉 are the ground states of the Hamiltonians H0 and Hm, respec-
tively, with zero eigenvalues.

We will use H(t) to denote the dependence of the Hamiltonian on the real time t, to
distinguish it from H̃(s) - the dependence on the abstract parameter s. The dependence
of s on t means a slowdown in evolution.

Under the conditions of the adiabatic theorem for the Hamiltonian H(t), we will again
consider |0〉 to be the ground state, and |1〉 to be the excited state for which an energy
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Figure 44: The eigenvalues of the Hamiltonian H̃ for N = 64. The picture is taken
from the article Roland, Cerf, Quantum Search by Local Adiabatic Evolution (arxive.org,
quant-ph/0107015).

gap of size g is realized. Then we have:

〈1|Ḣ|0〉 =
ds

dt
〈1|dH̃

ds
|0〉 =

1

T
〈1 H̃
ds
|0〉. (71)

First, we will try to follow a simple path, and choose s(t) as a linear function: s = t/T
for a su�ciently large T ; then the Hamiltonian will change slowly. Solving the eigenvalue
problem for the Hamiltonian H, we can also �nd the energy gap. The result of the
computation is as follows:

g =

√
1− 4

N − 1

N
s(1− s), (72)

here |〈1|dH̃
ds
|0〉| ≤ 1.

The formula (72) is graphically illustrated in the �gure 44. Now we will �nd the
minimum gap, which is equal to gmin = 1/

√
N (obtained for s = 1/2). Then the condition

of the adiabatic theorem gives us the inequality T ≥ N/ε. Thus, we get the same time of
the computation of |m〉 as on a classical computer, and the adiabatic algorithm does not
give quantum speedup.

To obtain the quantum speedup, we will set a more complex, nonlinear time dilation
s(t). Since the critical value of the gap g is not reached at any time, but only at s = 1/2,
we can improve the estimate of the total running time of the algorithm by selecting a
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Figure 45: Optimal time dilation for the adiabatic version of GSA. The picture is taken
from the article Roland, Cerf, Quantum Search by Local Adiabatic Evolution (arxive.org,
quant-ph/0107015).

nonlinear deceleration. To do this, we will apply the (67) relation locally, obtaining the
formula

|ṡ| ≤ g2(t)/|〈1|dH̃
dt
|0〉|. (73)

Using the ratio (72) under the condition |〈1|dH̃
ds
|0〉| ≤ 1, we obtain a time dilation

equation of the form:

ṡ = εg2(t) = ε(1− 4(1− 1/N)s(1− s)) (74)

for the small ε. Integration of (74) gives

t =
N

2ε
√
N − 1

(arctg((2s− 1)
√
N − 1 + arctg

√
N − 1), (75)

inverting, we �nd the �nal expression for time dilation in the form of a graph shown
in the Figure 45. Here it can be seen that time �ows most quickly in those areas where
the gap is large, and slowly - where the gap is small.

We will �nd the full running time of the algorithm by substituting s = 1 in (74):
T = π

√
N/2ε - this is exactly the acceleration that the standard Grover algorithm gives.

Now we show that the quantum acceleration found by the adiabatic method is optimal.
To do this, we consider two competing basic states |m〉 and |m′〉, each of which can be a
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target for Grover's algorithm. Let |ψm〉 and |φm′〉 be the states of a quantum computer
under adiabatic computation with some time dilation s(t). A properly working algorithm
must reliably distinguish them in time T , that is, the following inequality must be ful�lled

1− |〈ψm(T )|ψm′(T )〉|2 ≤ ε (76)

In the notation we have introduced, we will divide the Hamiltonian into two terms:
H̃(s) = H̃1(s) + H̃2m(s), ãäå

H̃1(s) = I − (1− s)|ψ0〉〈ψ0|, H̃2m(s) = −s|m〉〈m|

For the time dependence t, we, as before, use the notation H without tildes. Then
|ψm〉 and |ψm′〉 will be solutions of the equations

i|ψ̇m〉 = (H1 +H2m)|ψ〉, i|ψ̇m′〉 = (H1 +H2m′)|ψ〉
with the common initial condition |ψm(0)〉 = |ψm′(0)〉 = |ψ0〉.

We have:
d
dt

(1− |〈ψm|ψm′〉|2) =
2Im(〈ψm|H2m −H2m′ |ψm′〉〈ψm′ |ψm〉)
≤ 2|〈ψm|H2m −H2m′ |ψm′〉| |〈ψm′ |ψm〉|
≤ 2(|〈ψm|H2m|ψm′〉|+ |〈ψm|H2m′|ψm′〉|).

(77)

Now let's take the sum of m,m′ and get:

d
dt

∑
m,m′

(1− |〈ψm|ψm′〉|2) ≤ 4
∑
m,m′
|〈ψm|H2m|ψm′〉|

≤ 4
∑
m,m′
‖H2m|ψm〉‖ ‖|psim′〉‖ ≤ 4N

∑
m

‖H2m|ψm〉‖.
(78)

In the last transition, the Cauchy - Bunyakovsky - Schwarz inequality was used. Note also
that for the normalized state |ψ〉 from

∑
m

‖H2m|ψ〉‖2 = s2 follows
∑
m

‖H2m|ψ〉‖ ≤
√
Ns

(the inequality between norms in the spaces l2 and l1).

As a result, we have:

d

dt

∑
m,m′

(1− |〈ψm|ψm′〉|2) ≤ 4N
√
Ns. (79)

Integrating this inequality, we have:

∑
m,m′

(1− |〈ψm|ψm′〉|2) ≤ 2N
√
N

T∫
0

s(t)dt

and, given (76), we �nd

T ≥ ε(N − 1)/(4
√
N)

which proves that a properly working adiabatic algorithm for the brute force problem
cannot work faster than the root of classical time.
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The adiabatic theorem has many forms, and error estimates. The simplest one belongs
to Landau and Zener; it is valid only for a two-level system, that is, for a single qubit. It
has the form

err = O(e−C∆2tf )

where tf is the total time of the process.

6.3 Construction of Hamiltonians for adiabatic computations

To implement the adiabatic method, it is necessary to practically construct Hamil-
tonians with the necessary property: for the initial H0, its ground state should be quite
simple, and for the target H1, the ground state should give a solution to the desired
problem.

As a rule, the ground state of the initial Hamiltonian is chosen, as in the operator

version of Grover algorithm, in the form |0̃〉 = 1√
N

N−1∑
j=0

|j〉. Such a Hamiltonian, with such

a ground state, has the form

HI =
m∑
i−1

1− σxi
2

.

Indeed, for m = 1, this is checked directly, and for large m, the Hamiltonian decomposes
into the sum of terms-operators, for each of which the eigenstates will be states having in
the notation from linear algebra of the form (...a, a...)∗, where the positions in the vector
- column - of the basis state corresponding to the values 0 and 1 of a �xed qubit are
highlighted, and the dots denote arbitrary states. But this also means that the sum of
such operators has its eigenstate |0̃〉.

Now we will deal with the target HamiltonianH1. Let's �rst consider a simple example.
We have two qubits and the task is to determine whether their values are equal. For such
a search problem, the ground state of the target Hamiltonian will be

1√
2

(|01〉+ |10〉).

and the target Hamiltonian will have the form

H1 =
1

2
(I + σz1σ

z
2).

This is the so-called 2-bit disagree algorithm. The �gure 46 shows the behavior of its
spectrum depending on the mode s(t). Gluing two eigenvalues at the end of the process is
not fatal, since we do not care which of the ground states will be output when measuring
the �nal state.

Let's consider a slightly more complex problem - the exact coverage. This is the
problem of determining the truth of the conjunction &cCc where each factor Cc has the
form (xc1, x

c
2, x

c
3), where xcj is either xi or not xi for some i. Here Cc is true if and only if

exactly one term of xc1, x
c
2, x

c
3 is true.

We will introduce a covering function for each c

fc = (1− xc1 − xc2 − xc3)2
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Figure 46: The behavior of 4 eigenvalues for the 2-bit disagree algorithm. The picture is
taken from the article Adiabatic quantum computation and quantum annealing (Catherine
McGeoch).

and put f(x̄) =
∑
c

fc(x̄). Now we have

f(x̄) = −2m−
∑
i

(Bixi +Bixixi) +
∑
i<j

Cijxixj = −2m+
∑
i<j

Cij(1− si)(1− sj)

where xi = (1 − si)/2 is the formula for the transition between Boolean variables
xi = 0, 1 and spin variables si = ±1.

The target Hamiltonian for this problem has the form

H1 =
∑
i<j

Cij(1− σzi )(1− σzj ).

Now let's consider the general form of the SAT - problem-satis�ability of the formula
of the proposition logic. It is enough to assume that this formula is given in conjunctive
normal form, moreover, that each conjunctive term has the form fc, only now the truth
is determined by the rules of the logic of statements, where fc is the disjunction of three
variables or their negations (the so called SAT − 3 problem).

In this case, the de�nition of, for example, the elementary function fc for the elemen-
tary disjunction x1 or x2 or x3 will have the form

fc(s1, s2, s3) = (5− s1 − s2 − s3 + s1s2 + s2s3 + s1s3 + 3s1s2s3)/8.

The Ising model. The energy function for the basis state of n spins connected in
pairs has the form

H(s̄) =
∑
i

hisi +
∑
i<j

Jijsisj.
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Figure 47: Schematic representation of quantum annealing. The picture is taken from the
article Adiabatic quantum computation and quantum annealing (Catherine McGeoch).

The problem of �nding s̄ that minimizes this function is NP-complete if the spins are
connected in the form of a three-dimensional structure (Istral). Fu and Anderson showed
that it is NP-complete even for 2D connections, provided that nonzero hi are present.
The problem of �nding the minimum of the function H(s̄) is equivalent to �nding the
ground state of the Hamiltonian

H =
∑
i

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j .

To solve this problem, we can use the method of quantum annealing.

It consists of the following. We have a target Hamiltonian Htar, whose ground state
we need to �nd. We choose a perturbing Hamiltonian Hd and a schedule G(t) expressing
the intensity of the perturbation. This schedule is arranged as follows: G(0)� 1, G(t)→
0 (t→∞). The current Hamiltonian is selected in the form

H(t) = Htar +G(t)Hd.

An illustration of quantum annealing is shown in the �gure 47
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7 Lecture 7. Simpli�ed control and fermionic identity

in quantum computations

Quantum computer is the unexampled testing of quantum physics because it requires
such level of control over nano-sized objects, which has been never reached arti�cially.
Whereas the mathematical theory of quantum computing in the framework of standard
quantum formalism is well developed its physical realization represents the serious chal-
lenge to our understanding of the Nature. This is why it is important to look for its
simplest possible realization, so that it rests on the basic principles of quantum theory
and includes the minimal technological di�culties. Two requirements for such schemes
we can formulate: the adequate description of states forming the computational Hilbert
space, and the realistic method of control over computations.

Typically one computational element - a qubit we represent as some characteristic, like
a spin , charge or a position of some elementary particle. This approach works well for
the isolated qubit. For a system of several qubits, this approach meets serious di�culties.
These di�culties come from the fundamental principle of the non-distinguishability (or
identity) of elementary particles of the same type. To control a computation we must be
able to address to a separate qubit, whereas the di�erent particles are identical.

Of course, we can distinguish particles placing them on the big distance one from
another, but in this case, it will be di�cult to keep them in entangled states what is
necessary for quantum computations. One of the solutions of this dilemma is to use Fock
space of the occupation numbers for the description of quantum computations. Here the
natural identi�cation of qubits with the energetic levels in Fock space is used, so that the
unit is treated as the occupied level, and zero - as the free level.

This approach gives the universal quantum computations by the high cost. It requires
to control not only the external �eld and the tunneling, but also the diagonal interactions
between qubits, and the contact with the superconductor, e.g., we have to control the
coe�cients α, β, γ in (87) and to control on the additional summand δa+

k a
+
j + δ∗akaj.

In this section, we will see how to decrease this cost by means of the idea of the
continuous and non-controlled interaction. To this, we need two things: The supposition
that the initial Hamiltonian of interaction contains only the external �eld, the diagonal
and the tunneling summands, and the modi�ed correspondence between states in the
occupation numbers space and the computational Hilbert space. To control quantum
computation we then need only to switch the external �eld and the tunneling. Lasers
can ful�ll this type of the control. The main scheme we give further. It rests on the idea
of the continuous interaction, proposed in the work [25] and adapted to the language of
Fock space of occupation numbers.

7.1 One qubit control in quantum computations

The main di�culty in the practical realization of quantum computations is that it
is technically di�cult to ful�ll two qubit operators playing the necessary role in such
computations. To ful�ll these operators we must control the degree of entanglement of
particles that is determined by the overlapping of the spatial parts of their wave functions.
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However, to ful�ll computations we need to distinguish particles with certainty, which is
possible only if the overlapping is su�ciently small.

This is the evident contradiction in requirements for the physical realization of quan-
tum computations. We see that it is much more di�cult to realize two qubit gates then
one qubit. The following approach would be appropriate here. Since the interactions
between particles with the varying degree of entanglement follows from the wave equation
and is con�rmed in experiments, the two-qubit transformations go permanently in course
of natural time evolution of a quantum system. As for the control over such evolution, we
can ful�ll it by one-qubit impulses, whereas two qubit gate will go in the non controlled
background regime. This is the essence of the proposed quantum computations with one
qubit control.

This model is much more realistic than the abstract model of quantum computer,
which supposes the control on two-qubit interaction. We temporarily leave the question
about the general possibilities of this approach and demonstrate how the concrete prob-
lem about the simulation of the behavior of many bodies system with interaction of the
diagonal form can be solved in the frameworks of the proposed model. The main di�culty
of the proposed model is that two-qubit interaction is out of the control, in particular, it
goes with the outside qubits that seriously distorts the picture of quantum computations.
To perform computations in such model we have to create the method of the correction
of �undesirable� transformations by means of one qubit impulses.

For the demonstration of abilities of this approach, we �rst show how to realize quan-
tum Fourier transform in the framework of this model. The main supposition will be
that the Hamiltonian matrix of two qubit interaction has the diagonal form. For the
convenience, we at �rst impose some limitations on the speed of decreasing of this inter-
action with the distance. Namely, we suppose that the potential falls with the distance
as Yukawa potential. This method then can be applied to the more wide class of the
diagonal interaction. Moreover, this method can be generalized to the case when the
di�erent qubit pairs interact di�erently. At last, we apply this approach to the system of
many particles with the potential of diagonal type.

7.1.1 Realization of quantum Fourier transform on one qubit control

Quantum Fourier transform is the key subroutine in quantum computing. It is used in
the big number of other algorithms. The quantum gate array realizing this transformation
is represented at the Figure 41. It was proposed and used for the fast quantum factoring by
P.Shor (see [18]). We agree to represent an integer of the form a = a0 +a02+ . . .+al−12l−1

by the basic state |a0 a1 . . . al−1 〉 = |a〉 . These states form orthonormal basis for the
input states of the quantum gate array. We place them from the top to the bottom. The
analogous agreement we accept for the output state but the binar signs bj of the number
b = b0 + b02 + . . .+ bl−12l−1 we place in the opposite order.

This scheme ful�lls the reverse transformation QFT−1 in O(l2) steps, whereas its
matrix N = l2 - dimensional. However, in this scheme, the two qubit control is required,
it cannot be directly applied in terms of our model. We show how to do that. We treat
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the interactions of the form

A) H =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ρ

 , ρ > 0, B) H =


ρ1 0 0 0
0 ρ2 0 0
0 0 ρ3 0
0 0 0 ρ4

 , (80)

where all ρ = ρ0
e−br

r
; b = const; r is the distance between qubits-particles, and ρ1 + ρ4 6=

ρ2 + ρ3.

We place l qubits on one line with the equal intervals. Let the interaction between j -
the and k - th qubits have Hamiltonian Hj,k of the form (80). This type of Hamiltonian
arises, for example, in Izing model for particles with the spin 1/2. The required decreas-
ing on the interaction with the distance we can reach placing qubits to the appropriate
potential hole. Choosing the proper unit of the length we can ensure that b = 1. At �rst
we study the case of interaction of the form (80, A) and then extend the results to the
case (80, B).

Realization of QFT within phase shift

We remind that QFT and its reverse have the form:

QFT : |b〉 −→ 1√
L

L−1∑
a=0

e−
2πi ab
L |a〉, QFT−1 : |a〉 −→ 1√

L

L−1∑
b=0

e
2πi ab
L |b〉. (81)

The reverse transform can be then ful�lled by the following scheme.
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Picture 2. Rectangles denote continuous interaction
circles - Hadamard operators

Here rectangles denote unitary transforms of the form U = e−iH̃ , where H̃ =
∑

l>j>k≥0

H̃j,k,

and each from H̃j,k has the form (80 , A) with ρ0 = π, r = j− k. If we choose the system
of physical units such that Planck constant multiplied to ρ0 equals to π when the unit of
the length such that r = j − k, then U will be exactly the transformation of the state
vector induced by the considered Hamiltonian in the unit time. Here we suppose that
the time of one-qubit operations is negligible, and the interaction between qubits cannot
substantially change the phase in this time.

This scheme can be obtained from the previous one by the insertion of the missing
elements corresponding to the interaction going in the system with this Hamiltonian.
To prove that this scheme really ful�lls QFT−1, we apply the method of the amplitude
counting proposed in the paper [18]. Let the basic input state be given: |a〉, we consider
the corresponding output state. This output state is the linear combination of basic states
|b〉 with some amplitudes. We choose some basic state |b〉 and will �nd the amplitude
of transformation |a〉 → |b〉 by our scheme. All modules of these amplitudes are the
same and equal 1/

√
L, and we have to look after their phases only. For the simplicity we

introduce the notation a′j = al−1−j, j = 0, 1, . . . , l − 1.

In the course of application of our scheme the value of qubits number j and k ≤ j pass
through elements form the picture 2 from the left to the right. Following this direction,
we separate four types of interactions: The interaction of a′j with itself and a′k with itself
in Hadamard gate, the interaction of a′j with a′k (j > k), the interaction of a′j with bk
for j > k, and the interaction of bj with bk (j > k). The times of the second and third
interactions will be: zero and j − k correspondingly. Summing the deposits of these
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interactions to the phase we obtain the resulting phase of the form

π
∑

l>j>k≥0

a′jakk

2j−k
C1 + π

∑
l>j>k≥0

a′jbk(j − k)

2j−k(j − k)
+ π

∑
l>j≥0

a′jbj + π
∑

l>j>k≥0

bjbk
2j−k

C2, (82)

for some C1, C2.

We denote the �rst and the fourth summands by A and B correspondingly. Their de-
posit corresponds to the action of the diagonal Hamiltonians to |a〉 and |b〉 correspondingly.
We temporarily leave these deposits. We take up the second and the third summands of
this sum. After the replacement of j by l − 1− j this part acquires the form

π
∑

l−1>k+j≥0

ajbk2j+k

2l−1 + π
∑

l−1≥j≥0

al−1−jbk = 2π
∑

l>k+j≥0

ajbk2j+k

2l
= 2πS + 2π

∑
l>k,j≥0

ajbk2j+k

2l
=

2πS + 2π ab
2l

(83)
for some integer S. The �rst summand does not change the phase and we obtain that is
required within the deposit of A and B.

Correction of phase shift

To account the deposit of diagonal summands A and B to the phase we apply one
trick. At �rst we consider the summand A. It consists of the members of the form
Aj,k = cj,ka

′
ja
′
k, where cj,k depends only on j and k, but not on a. We call j-th and k-th

qubits separated.

We will apply one-qubit operator NOT several times to each qubit but separated in
order to suppress all interactions but the interaction going between the separated qubits.
At �rst we consider the pair of not separated qubits with the numbers p, q, q > p. Their
continuous interaction in time ∆t gives the summand dp,q∆t a

′
pa
′
q to the phase, where the

real number dp,q depends only on how fast the interaction falls with the distance, but not
on a′p, a

′
q. For example, for the decreasing of Yukawa type we have dp,q = e−|q−p|/|q − p|.

Now we invert one of these two qubits, no di�erence which exactly, let it be q-th, by
means of the NOT gate. It state will be 1−a′q. Now the second period of the longitude ∆t
of the continuous interaction gives the summand dp,q∆t a

′
p(1− a′q) to the phase. At last,

we restore the contents of q-th qubit by the second application of NOT. The resulting
phase shift in these four actions will be dp,q∆t a

′
p and it depends on the contents of p-th

qubit only.

Now we can compensate this phase shift by means of single one qubit transformation. If
we consider the pair of qubits with the numbers p, q, where one, say, p-th is the separated,
the other is not separated, we then can compensate its interaction using only one qubit
operations: two NOTs for q-th and some phase shift for p-th. Now we have to modify this
method so that to compensate all in�uences of not separated qubits simultaneously.

For this, we will ful�ll NOT operations on each such qubit with the su�ciently small
time intervals so that the deposits to the phase of non-separated qubits will cancel each
other. There are two ways to do it: to use the random process for the generation of
the moments for one-qubit operations, or to realize them periodically with the di�erent
periods for the di�erent qubits. At �rst, we study the �rst approach.
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Method of random processes

For each not separated qubit number p we consider the Poisson process Ap, generating
time instances 0 < tp1 < tp2 < . . . < tpmp < 1 with some �xed density λ � 1. Let all Ap
be independent. We ful�ll NOT operators on each not separated qubit with number p in
time instances tpm sequentially. In the moment 1 we ful�ll NOT on p-th qubit if and only
if mp is odd. Therefore, after this procedure each qubit restores its initial value.

We count the phase shift generated by this procedure. Interactions between the sep-
arated qubits remain untouched. We �x some non-separated qubit and count its deposit
to the phase. It consists of two summands: the �rst comes from the interaction with the
separated, the second - from the interaction with non-separated qubits. We �nd them
sequentially.

1. In view of high density λ of Poisson process Ap about the half of all time p-th qubit
will be in the state a′p, and the remaining half - in the state 1−a′p. Its interaction with the
separated qubit, say, with j-th, gives the deposit 1

2
dp,ja

′
pa
′
j + 1

2
dp,j(1− a′p)a′j e.g., 1

2
dp,ja

′
j.

2. We consider the di�erent non-separated qubits with the numbers q 6= p. In view of
independency of the time instants on the ful�llment of NOT- operators on pì and q-th
qubits and the high density λ, these qubits will be in each state (a′p, a

′
q), (a

′
p, 1 − a′q),

(1 − a′p, a′q), (1 − a′p, 1 − a′q) approximately the quarter of the all time. The resulting
deposit will be 1

4
dp,q[a

′
pa
′
q +a′p(1−a′q)+(1−a′p)a′q +(1−a′p)(1−a′q)] = 1

4
dp,q. The common

phase shift coming from the presence of non separated qubits is found by the summing of
the values from the points 1 and 2 for all p /∈ {j, k}. It will be

1

2
[
∑

p/∈{j,k}

dp,ja
′
j +

∑
p/∈{j,k}

dp,ka
′
k] +

1

4

∑
p,q /∈{j,k}

dp,q.

This shift can be compensated by only one qubit gates because the �rst two summands
depend on the values of qubits only, and the other are constants. We thus obtain the
scheme with the continuous two qubit interaction and one qubit operations which ful�lls
the appropriate phase shift to dj,ka

′
ja
′
k.

If we take the time segment ∆t instead of the unit time in this procedure, we obtain
the phase shift to ∆t dj,ka

′
ja
′
k. If we want to obtain the phase shift to −∆t dj,ka

′
ja
′
k, we

must at �rst apply NOT to j-th qubit, then the previous procedure, then again NOT to
j-th qubit, and at last, add −∆t dj,ka

′
k by the one qubit operation.

Therefore, we can do any addition to the phase of the form c · a′ja′k for a real c
independently of its sign. The appropriate combination of these schemes gives the phase
shift ∑

j,k

cj,ka
′
ja
′
k (84)

for any cj,k. Disposing these operations before and after QFT−1 in the procedure of
the previous point, we compensate the summands A and B in the phase and obtain the
scheme realizing QFT−1. The errors appearing in this scheme come from the possible low
quality of Poisson processes generating the moments of the ful�llment of NOT operations,
and from the interaction in course of these operations. They can be minimized by the
increasing of the density λ and the decreasing of the time of NOT operations comparatively
with the typical time of two qubit transformations determined by dj,k.
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We evaluate the slowdown induced by the insertions of NOTs with the high density
in comparison with the abstract realization of quantum computations of quantum gate
arrays. We �x the unit of time such that the application of one operation in the scheme
requires the unit time. Let the time axes be divided to the equal short intervals of the
length δt units, NOT-th can be applied in the moments of the form kδt only, for any
integer k with the probability p = 1/λ, where λ in the density of process.

Let the time of the whole computation equal T , and M = T/δt. The error in the
phase coming from the low intensity of Poisson processes is the mean square deviation of
the sum of independent variables taking the value ±1, that is

√
Mδt2 =

√
Tδt. It can be

done as small as wanted for δt → 0, but if δt = const the error will increase and we will
not obtain the scalable computation.

We now prove the universality of the proposed model of quantum computations. We
suppose that the interaction between qubits depends on their spatial positions only that
we set �xed. The single condition we impose to the interaction is that it must be diagonal.
Thus if j and k denote the number of two qubits, Hamiltonian of their interaction has
one of the forms

A)Hj,k =


Ej,k

1 0 0 0

0 Ej,k
2 0 0

0 0 Ej,k
3 0

0 0 0 Ej,k
4

 , B)Hj,k =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Ej,k

 , Ej,k > 0.

(85)

At �rst we note that any interaction on the general form (80, A) can be reduced to the
form (80, B) by the addition of the proper one qubit Hamiltonians H ′j,k, which matrices
have the forms 

a 0 0 0
0 a 0 0
0 0 b 0
0 0 0 b

 ,


α 0 0 0
0 β 0 0
0 0 α 0
0 0 0 β

 .

This addition reduces Hamiltonian of the form (85, A) to (85, B) and it can be realized
by the one qubit gates, since all diagonal matrices commutes. We note that the di�erent
pairs of qubits can interact di�erently, they can be placed on the di�erent distances, not
necessary on one line, etc.

To prove the universality of the computational model with the continuous interaction
we have to show how to ful�ll an arbitrary two-qubit operation. Let we be given a unitary
operation induced by Hamiltonian (85, B) in the unit time: Uj,k = exp(−iHj,k) (Plank
constant we set equal unit, as usual). We show how to make this operation on two qubits:
j-th and k-th, preserving all the rest. If we can do it, we will be able to realize any two
qubit operation on any pair of qubits. Then for the far interaction, we have at most the
linear slowdown comparatively to the standard model, and for the short interaction, we
have to ful�ll SWAP operation to bring the required pair of qubits together. We thus
obtain the multiplier to the time of computation proportional to the size of memory.

To make transformations Uj,k it is needed to apply the method of NOT operations on
non separated qubits described in the previous point, in moments of time generated by
the independent Poisson processes of high density. However, now the advantage of this
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method is not as evident as in the case of QFT, because, for example, the fast quantum
search requires more than logarithmic time: the square root of classical time. For such
cases, one can apply the following modi�cation of our trick.

Method of periodic NOTs

We will make NOT operations on each of j qubits in the time instants of the form jkδt
for integer k, where δt is again the small period. We then can repeat the construction
described above, and get rid of undesirable phase shifts by means of appropriate choice
of δt. This method gives the slowdown as the multiplier of the order n2 comparatively to
the complexity of the abstract model of quantum gate arrays.

Now it is su�cient to show how by means of transformations Uj,k we can make any
two gubit gate. For example, we demonstrate how to realize CNOT operator on this pairs
of qubits. Let j, k be �xed and we omit indexes. We denote ∆E = E1−E2−E3 +E4. If
∆E
π

/∈ Q (∆E
π

not rational, then (because the physical parameters of our system a�ecting on
phases, for example, cycle periods, can be slighly changed to avoid the rational parameter,
we can treat it irrational without loss of generality) we can ful�l CNOT operation

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


on the chosen pair of close qubit using only one qubit operators and the �xed diagonal

operation E, where E =


exp (iE1) 0 0 0

0 exp (iE2) 0 0
0 0 exp (iE3) 0
0 0 0 exp (iE4)

 by the following

way.

I. We denote the sequence of rotations of the phase of the �rst qubit by

A =

(
1 0
0 exp (i (E1 − E3))

)
, of the second qubit by B =

(
exp (−iE1) 0

0 exp (−iE2) ,

)

and the operation U = E (A
⊗

B) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 exp (i∆E) .


II. Using the irrationality of ∆E

π
it is possible to show that ∀ε > 0∃m ∈ N∃n ∈ N :

|∆En − π(2m + 1)| < ε, e.g., for any chosen accuracy ε there exists n = n(ε) such that

Un approximates the operator Π where Π =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 within the given accuracy.

III. Using the equality (I
⊗

H)Π(I
⊗

H) = CNOT, where I is the identity matrix

and H - is Hadamard operation H = 1√
2

(
1 1
1 −1

)
we see that CNOT is obtained as the

sequence (I
⊗

H) (E (A
⊗

B))n (I
⊗

H) of one qubit rotations and operation E.
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7.2 Formalism of occupation numbers

We consider the system consisting of n identical particles. At �rst, we make the
not physical supposition that they can be certainly distinguished. Then the state of such
system belongs to Hilbert space with the basis ψ(r1, r2, . . . , rn) = ψj1(r1)ψj2(r2) . . . ψjn(rn)
where {ψj} is some basis for the one particle states, js belongs to some �xed set of indexes
1, 2, . . . , J , so that rj includes spatial and the so-called spin coordinates as well. The choice
of basis means simply that the system can be found only in some of basic states after the
observation.

However, in the real system of identical particles they cannot be distinguished. There-
fore, each basic state must contain all summands of the form ψj1(r1)ψj2(r2)) . . . ψjn(rn)
with some coe�cients. Now we need some information about the nature of the considered
particles. They can be fermions, like electrons or protons, or bosons (as photons). The
di�erence between these two types of particles is that the maximal value of the fermionic
spin is half integer (1/2, 3/2, ...) and for bosons, it is integer (0,1,2,...).

For us it is signi�cant that the wave function of the system of fermions must change
its sign in the permutation of two particles, for bosons, the sign is preserved. Algebraic
correspondence we established between functional notations and qubit formalism dictates
the representation of the wave function for the system of n fermions in the form of the
determinant:

Ψ =
1√
N !

∣∣∣∣∣∣∣
ψj1(r1) ψj1(r2) . . . ψj1(rn)

...
...

...
...

ψjn(r1) ψjn(r2) . . . ψjn(rn)

∣∣∣∣∣∣∣ , (86)

and for the system of bosons in the form of the corresponding permanent.

The permanent of matrix di�ers from its determinant only in that there are pluses
instead of minuses in its computation, so that it remains unchanged in the permutations
of rows of columns.

Such state we can treat as the situation when only the states ψjs for s = 1, 2, . . . , n
are occupied by particles of our system, whereas the rest ψk for k ∈ {1, 2, . . . , J}, which
have not the form js are free. If ψ with indices denotes an eigenvector of the one particle
Hamiltonian we speak about the occupied or free energetic levels, but in general, ψk can
form the arbitrary orthonormal basis in the space of one particle states.

The state of the form (110) can be represented as the symbol |n̄Ψ〉 = |n1, n2, . . . , nJ〉
where nk is the unit, if k-th energetic level is occupied and zero, if it is free. It is the
natural representation of the fermionic ensemble state in terms of occupation numbers.
Such vectors n̄ form the basis of Fock space and the general form of a state of our system
in this basis is

∑̄
n

λn̄|n̄〉 with amplitudes λ.

The operator of annihilation aj of the particle in the state j (j-th energy level) and its
conjugate operator a+

j (creation of the particle in this state), is de�ned as aj|n1, . . . , nJ〉 =
δ1,nj(−1)σj |n1, . . . , nj−1, nj − 1, nj+1, . . . , nJ〉 where σj = n1 + . . . + nj. They possess the
known commutative relations: a+

j ak + aka
+
j = δj,k, ajak + akaj = a+

j a
+
k + a+

k a
+
j = 0.

Let us suppose that any interaction in Nature touches no more than two particles.
Each interaction in many body ensemble then can be decomposed to the sum of one -
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two particle interactions of the form H = Hone +Htwo with the corresponding potentials
V1(r) è V2(r, r′). Each of them can be represented through the operators of creation and
annihilation in the form Hone =

∑
k,l

Hk,la
+
k al, Htwo =

∑
k,l,m,n

Hk,l,m,na
+
l a

+
k aman ãäå

Hk,l = 〈ψk| Hone |ψl〉 =
∫
ψ∗k(r)V1(r)ψl(r)dr,

Hk,l,m,n = 〈ψl, ψk |Htwo | ψmψn〉 =
∫
ψ∗k(r)ψ

∗
l (r
′)V2(r, r′)ψm(r)ψn(r′)drdr′.

Hence, given potentials of all interactions and all basic states ψi, we can in principle
�nd their representation in terms of operators of creation and annihilation, that is in the
language of occupation numbers.

We consider the ensemble with Hamiltonian of the form H =
∑

iH
i
ext.f.+

∑
i,j(H

i,j
diag.+

H i,j
tun.), where Hamiltonians of external �elds, diagonal interaction and tunneling are rep-

resented in terms of creation and annihilation operators as

H i
ext.f. = αia

+
i ai, αi ∈ R,

H i,j
diag. = βi,ja

+
i aia

+
j aj, βi,j ∈ R,

H i,j
tun. = γi,ja

+
i aj + γ∗i,ja

+
j ai.

(87)

We note that to realize the control on the diagonal Hamiltonian would be di�cult,
because this interaction touches two arbitrary particles in the considered ensemble, which
are non-distinguishable by the identity principle. It is thus natural to treat this inter-
action as constant and independent from our control, whereas we can e�ectively control
the tunneling interaction. This form of control makes possible to realize any quantum
computation. This type of the control looks as more realistic because we can realize the
tunneling by means of laser impulses.

7.3 Computations controlled by tunneling

To prove the universality of the proposed simpli�ed scheme of control on fermionic
computations we must make one technical preparation, namely, to establish some di�erent
correspondence between Hilbert space of qubits and Fock space of occupation numbers.
This correspondence will be di�erent from the natural correspondence we spoke earlier.

We �x some division of the set of energy levels to two parts and choose some one-to-
one correspondence between these parts. For the determinacy we can take the k-th level
down from Fermi level εF and agree that it corresponds to the k-th level up from εF . We
denote j-th level don from Fermi border by the standard letter, and the j-th level up from
this level by this letter with the stroke j′. We call the �rst level the j-th the lower level
and the second level the j-th upper level. Fock space F can be then represented as

F = F1

⊗
F2

⊗
. . .
⊗
Fk

where each Fj corresponds to j-th pair of corresponding energy levels. We consider
the subspace Fj in Fj, which is generated by two following vectors. The �rst will be:
"j′-th level is occupied, j-th free", the second will be: "j-th level is occupied, j′-th is
free". We denote them by |1〉j and |0〉j correspondingly.
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We will work with the subspace

F = F1

⊗
F2

⊗
. . .
⊗

Fk

in Fock space F . We de�ne the function θ, which maps our Hilbert space H to F by
the following de�nition on basic states:

θ(|ξ1, ξ2 . . . ξn〉) = |ξ1〉1
⊗
|ξ2〉2

⊗
. . .
⊗
|ξn〉n

where all ξj are zeroes and units. Then the function θ establishes the non-standard
correspondence between Hilbert and Fock spaces (see the picture A2).

One qubit state in Hilbert space corresponds to two-qubit state in the usual identi�-
cation with qubits (one level - one qubit). We will see that this identi�cation better �ts
to our aims than the natural. Now all is ready for the representation of unitary oper-
ators in Hilbert space in terms of operators acting in the space of occupation numbers.
We consider an arbitrary Hermitian operator H in two-dimensional Hilbert space of one
qubit states H. It has the form H0 +H1, where

H0 =

(
d1 0
0 d2

)
, H1 =

(
0 d
d̄ 0

)
.

ξ ∈ H |0〉2 |1〉2 |010〉

e

e

e

e

e
u

u

u

u
u

θ(ξ) εF

3

2

1

0

1′

2′

3′

Picture A2. Correspondence between Fock and Hilbert spaces

It can be straightforwardly veri�ed that for operators H̃0 = d1a
+
k ak + d2a

+
k′ak′ and

H̃1 = da+
k ak′ + d̄a+

k′ak (external �eld and tunneling) the following equalities take place:
H̃iθ = θHi for i = 0, 1. Using the linearity θ, we �nd (H̃0 + H̃1)θ = θH. Now we consider
one qubit unitary operator U in Hilbert space. It has the form e−iH for Hamiltonian
H (we have chosen the appropriate unit system to get rid of Plank constant and the
time). Due to the linearity of θ and the equation θ−1Hsθ = (θ−1Hθ)s for integer s we
�nd that for any one qubit unitary operator U we can e�ectively �nd the corresponding
Hamiltonian in Fock space containing only the external �eld and the tunneling, which
makes the diagram A from the picture A3 closed.
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We take up two qubit transformations in Hilbert space. Since all diagonal matrices
commute, for all diagonal transformations in the spaces Fk

⊗
Fj ì can e�ectively �nd

the corresponding diagonal operator in Hilbert space, which makes the diagram B from
the picture A3 closed.

Now all is ready for the transfer of the trick from the work [25] with one qubit control
to Fock space. The combination of diagrams from the picture A3 gives the diagram from
the picture A4.

- -

- -

6 6 6 6

θ θ θ θ

H H H H

F̃ F̃ F̃ F̃
ext. �eld + tunneling F̃ diagonal

one-qubit on H H diagonal

A B

Picture A3. Correspondence of operators in
Fock and Hilbert subspaces. F̃ = Fj

⊗
Fk.

F diag f+t F diag

diag one qubit diag

- - -

- - -

6 6 6

. . .

. . .

F F F

H H H

Picture A4. Correspondence of computations in
Fock and Hilbert spaces

Let the diagonal part of Hamiltonian of interaction in Fock space be �xed and act
permanently in the non-controlled mode. We then can �nd the corresponding diagonal
interaction in Hilbert space, making closed the "diagonal" parts of diagrams from the
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picture A4. By virtue of the result of theh work [25] we can �nd one-qubit transformations
realizing the control on the arbitrary quantum algorithm in Hilbert space, in the form of
the lower sequence of transformations in the diagram. Al last, we can �nd the control of
the form "�eld + tunneling" on the state in Fock space making closed the whole diagram.
We note that all operators of creation and annihilation considered in the whole Fock space
are non-local due to the multiplier (−1)σj , which depends on a given state.

For the diagonal operator a+
j aja

+
k ak and the external �eld these multipliers compensate

each other. The tunneling operator a+
j aj′ in the space F brings the multiplier (−1)σ

′
where

σ′ =
j′−1∑
s+j

ns = j′ − j, which does not depend on the given state |n̄〉 ∈ F , because for such

state exactly the half of levels between j and j′ are occupied by fermions. The sign we
can factorize from all states, and ignore.

We thus obtain the universal quantum computer on states in the space of occupation
numbers, controlled by the external �eld and the tunneling only.

8 Lecture 8. Implementation of quantum computing

on optical cavities

The physical implementation of quantum computing is a separate big topic that re-
quires a physical foundation for building gates. Here we give an example of such an
implementation on atomic excitations in optical cavities. The physical part is described
in the framework of �nite-dimensional models of quantum electrodynamics in optical cav-
ities - the Jaynes-Cummings-Hubbard model.

8.1 The Jaynes-Cummings Model

The di�culty of experimental accounting for the electromagnetic �eld is that its ex-
citation quanta travel at the speed of light, so that as soon as a photon appears, it will
cover most of the distance from the Earth to the Moon in a second. The method of
photon retention is ideologically simple: it is necessary to place mirrors re�ecting the
photon opposite each other so that it runs between them and does not �y far away for a
su�ciently long time.

This device is called a Fabry-Perot interferometer (see Figure 48). Two mirrors form
a kind of cavity, or resonator, into which a photon can be launched with a laser, and
extracted with a mirror with variable re�ectivity; such a mirror is called a Pockels cell.
A voltage can be applied to the cell, then it will begin to re�ect the photon that has
fallen on it; when the voltage is turned o�, it becomes transparent and the photon passes
through it freely. The side walls of the cavity are also made of a light-re�ecting material.

Possible operation with atoms in the cavity is shown at the Figure 49.

If an atom is placed in such an optical cavity, it will be able to interact with the
�eld inside the cavity, if for some energy levels of its electrons, which we denote by |0〉 -
conditionally basic, and |1〉 - conditionally excited levels, the transition energy between
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Figure 48: Optical cavity with atoms

these levels ∆E = ~ω is such that ω very accurately approximates the frequency of a
photon in the cavity. At the same time, when a photon is absorbed, the atom passes from
the ground state |0〉 to the excited |1〉, and vice versa, during the reverse transition of the
atom, a photon is emitted.

The complete cycle of interaction of an atom with a �eld, including the absorption of
a photon by an atom and its subsequent emission, is called a Rabi oscillation. In order
for one such oscillation to occur, for example, in the rubidium atom Rb85, where the
transition frequency between the levels is approximately ωRb ≈ 1010 sec−1, the photon
must be held in the cavity for a long enough time, so that during this time it manages to
be re�ected from the mirrors several tens of thousands of times. Therefore, the mirrors
must be of very high quality; they are made of a superconducting material, for example,
niobium, and they function at a very low temperature of liquid helium.

But the quality of mirrors is not enough, since a photon can leak out of the cavity due
to its interference nature. This nature follows from the principle of interference, which
we brie�y described in the �rst chapter. I recommend the reader to refer to the detailed
explanation of the operation of this principle in relation to photons, given in R. Feynman's
book [7].

In order for the photon to remain in the cavity for a long time, it is necessary that
the electric �eld created by it constructively interferes with itself inside the cavity, and
destructively-outside it. This is provided by the length of the cavity - the distance between
the mirrors L. The length must be a multiple of the half-wave of the photon length, that
is, L = kλ/2, where λ = 2πc/ω, k = 1, 2, ....

An atom placed in the cavity interacts with a �eld with an interaction energy g, which
is calculated by the formula

g =

√
~ω
V
dE(x), (88)

where V is the e�ective volume of the cavity (the volume where the photo is present), d
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Figure 49: Manipulation with atoms in optical cavity

is the absolute value of the d̄ dipole transition between |0〉 and |1〉, E(x) is the factor of
the location of the atom inside the cavity. The goal is to make g as large as possible, for
the fastest possible manifestation of the properties of the interaction of light and matter.
Therefore, the length of the cavity should be chosen so that k = 1, and L = λ/2. In
this case, the constructive interference of the photon's electric �eld inside the cavity is
maximal, and its intensity is distributed along the sinusoid, so that E(x) = sin(πx)/L.

The dipole transition is calculated by the formula d̄ = e
∫
R3

ψ∗0 r̄ψ1dr̄, where ψ0, ψ1 are

the wave functions of the electron states in the ground and excited states inside the atom,
depending on the three-dimensional vector r̄, e - electron charge (we suppose that the
transition between atomic states is connected with one electron).

The actual output of the formula (88) can be found in the book [8]. The constant g,
generally speaking, is complex, but it is possible by multiplying the basis vector |1〉 by a
suitable complex number eiφ to achieve that g is a real non-negative number, which we
will assume in the future.

Thus, the interaction of the �eld with the atom inside the cavity is the interaction of
the atom with the quantum harmonic oscillator described in the Appendix of [26]. The
conditional "coordinate" of the x �eld with an accuracy of constants is expressed in terms
of the operators of the birth of a+ and the destruction of a of a photon in the �eld as
x = a+ + a.

We introduce, similarly to �eld operators, the operators σ+, σ - atomic excitation and
relaxation operators; we get a set of �eld operators and atoms of the form

a : |n〉ph →
√
n|n− 1〉ph, a+ : |n〉ph →

√
n+ 1|n+ 1〉ph,

σ : |0〉at → 0, |1〉at → |0〉,
σ+ : |0〉at → |1〉at, |1〉at → 0,

(89)

so the number of photons n = 0, 1, 2, ..., and the number characterizing the atomic exci-
tation takes only two values 0 or 1, and the relaxation σ an atom already in the ground

98



state |0〉at leads to the destruction of the state as such (zero in the state space), and the
excitation of the already excited state of the atom gives the same result; in other cases,
the operators act naturally.

We introduce a conditional "coordinate" of the atomic excitation X by analogy with
the �eld "coordinate": X = σ+ + σ. Let the interaction of the �eld with the atom
be denoted by G(x,X), where x, X are the conditional "coordinates" of the �eld and
the atomic excitation, respectively. Decomposing this function into a Taylor series, we
see that the lowest interaction term containing both coordinates has the form gxX =
g(a+ + a)(σ+ + σ). This is called the dipole approximation of the interaction of an atom
and a �eld. It is valid if the size of the atom is signi�cantly smaller than the wavelength of
the photon; this assumption is ful�lled in most practically important cases, for example,
in chemistry.

If we take into account the following terms in the Taylor expansion of the function
G(x,X), we will get higher terms in the interaction approximation; we will not deal with
them.

The eigenvalues of the atom and the �eld are given by the formulas Eat = ~ωσ+σ,
Eph = ~ωa+a. We omit the energy of the vacuum state ~ω/2, since in this case it does
not play a role.

The listener is provided to check that adding a constant to the Hamiltonian, that is,
the transition from H to H + cI, leads only to the appearance of an additional phase
multiplier of the form e−ict/~ in solving the Schrodinger equation, which has no physical
meaning and disappears when passing to the Schrodinger equation for the density matrix.
Summing them with the interaction energy, we obtain the Jaynes-Cummings Hamiltonian
for a two-level atom in an optical cavity:

HJC = ~ωa+a+ ~ωσ+σ + g(a+ + a)(σ+ + σ). (90)

It is quite di�cult to solve the Cauchy problem for the Schrodinger equation with
such a Hamiltonian. The fact is that the interaction contains the terms aσ and a+σ+.
which individually do not save energy. This means that for a potentially in�nite matrix
of the operator HJC there are no �nite-dimensional invariant subspaces, and one has to
deal with in�nities, which is di�cult and essentially incorrect.

Fortunately, this di�culty is avoided for most applications where the interaction force
g is small compared to the excitation energy ~ω of the atom. If g/ω̄ � 1, the non-energy-
conserving terms can be discarded, and the Hamiltonian will take a much more convenient
form

HRWA
JC = ~ωa+a+ ~ωσ+σ + g(a+σ + aσ+). (91)

This is the so-called rotating wave approximation RWA, its output can be found in the
suplementing materials.

Our physical system is composite. It consists of two parts: a �eld and an atom. Let's
agree to denote the basic states by writing out �rst the number of photons in the �eld,
and then the atomic excitation: |n,m〉, so that n = 0, 1, 2, ..., m = 0, 1, and omit the
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Figure 50: Rabi oscillations between populations of states |n, 0〉 è |n− 1, 1〉.

subscripts ph and at. When writing operators, we usually accept the following agreement:
if an operator acting on another element of the composite system is not speci�ed, it is
assumed to be an identical operator: Iat or Iph. Thus, for example, the entry a+a should
be interpreted as a+a⊗ Iat, and the entry aσ+ - either as a⊗ σ+, or as a matrix product
of a⊗ Iat · Iph ⊗ σ+. Check that both paths give the same result.

For the Hamiltonian HRWA
JC , the space of quantum states decays into a direct sum of

invariant two-dimensional subspaces Hn, each corresponding to the energy En = ~ωn,
and is generated by the vectors |n, 0〉, |n − 1, 1〉. The Hamiltonian bounded by Hn has
the form

Hn =

(
~ωn g

√
n

g
√
n ~ωn

)
. (92)

The expression (92) says that the states |n, 0〉 and |n − 1, 1〉 pass into one another
during evolution, and their population changes according to a sinusoidal law (see Figure
50).

From this it can be seen that the populations of the states |n, 0〉 and |n−1, 1〉 alternate,
oscillating in the opposite phase. If,at one of the vertices of the population graph of the
state |n, 0〉, photons are somehow extracted from the cavity (this is done using a special
optical mirror-a Pokkels cell), then the atom will remain in the cavity in the ground
state. This important remark will be useful to us in the future, when designing the
coCSign quantum gate.

8.2 The Tavis-Cummings-Hubbard model

If we connect two cavities with a waveguide consisting of an optical �ber, along which
photons from one cavity can move to another cavity, we get a more complex model, which
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Figure 51: The Jaynes-Cummings-Hubbard model. The TCH model di�ers only in the
presence of several atoms in the cavities

is described by the Tavis-Cummings-Hubbard Hamiltonian of the form

HTCH =
m∑
i=1

H i
TC +

∑
1≤i<j≤m

µij(a
+
i aj + aia

+
j ). (93)

This model is closer to reality than the single-band model, since it already allows the
possibility for photons to become distinguishable by being in di�erent cavities (see Figure
51).

8.3 Entangling gate in JCH model

Quantum computing is an intrusion of quantum theory into the �eld of complex pro-
cesses, where the operation of its basic laws has not yet been studied. Therefore, the
construction of the simplest schemes of computations, in which the quantum laws would
appear as clearly as possible, is an urgent task. The dark place here is decoherence, which
occurs due to the interaction of charges and the �eld, the quanta of which closely connect
the quantum computer with the environment. This makes it necessary to account for and
control, or even explicitly use photons in quantum protocols.

Photons as information carriers make it possible to use linear optical devices to imple-
ment single-qubit gates, but the design of entangling operations is di�cult, since photons
do not directly interact with each other. There is a popular KLM scheme (see [27]),
where measurements are used as an interaction ersatz, and its improvement [28] with
teleportation (see [29]), which signi�cantly increases its e�ciency, as well as a number of
variants of this scheme for atoms (see, for example, [30]). However, the use of classical
probabilistic schemes in practical implementation places increased requirements on the
e�ciency, at least theoretically, of quantum gates on single particles. The use of classical
probability obscures the main question of a quantum computer: how does coherence work
for complex systems of di�erent particles?

The most basic methods are more suitable here, the main of which are optical cavities
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with several atoms, the interaction of which with a single-mode �eld is clearly described
from the �rst principles (for the capabilities of this type of devices, see, for example,
[31]). Thus, the CNOT gate was implemented using the external - vibrational-degrees of
freedom of the atom (see [32]).

However, the essence of quantum computing is not the coherent behavior of a single
qubit, but the scaling of a Feynman quantum processor that implements the theoretical
possibilities of unitary dynamics in the entire Hilbert state space, giving, for example,
the Grover [12] algorithm on the same equipment as the Shor [18] algorithm. The use of
external factors to demonstrate the dynamics of individual atoms and the �eld is useful
for individual atoms, but the inevitable interference introduced will certainly a�ect the
scaling.

Therefore, the value is represented by gate implementation schemes that use minimal
means, which are well described from the �rst principles. One of these schemes is proposed
in the article X.Azums [38], where dual-rail states of single photons are used as qubits. In
this scheme, the interaction of photons with atoms is used only to perform an entangling
transformation CSign, which requires two optical cavities; two beam splitters and phase
shifters are also required.

We will describe a simpli�cation of the Azuma scheme, where only one cavity is used,
and the beam splitters are replaced by a time shift for photons entering it. We will have
asynchronous states of atoms in Rabi oscillations as logical cubes. This scheme can be
modi�ed for purely photonic carriers, with a time shift that determines the value of the
qubit. However, atoms as information carriers have the advantage that they are much
easier to control, as well as the photons they emit.

The advantage of the proposed scheme is its simplicity. The disadvantage is the same
as in the [38] scheme-the dependence on the time accuracy of the operation of the Pokkels
cell or its analog, the operating time of which must be made signi�cantly less than the
time of the Rabi oscillation of the atom in the cavity.

For technical reasons, we will implement the coCSigngate : |x, y〉 → (−1)x(y⊕1)|x, y〉,
changing sign at a single state |10〉, related to the CSign gate, which is implemented
in [38]; there is no di�erence, since coCSign = CSignσx(y), and single-qubit gates are
implemented by linear optical devices.

8.4 Calculation of phase shifts

The core of this scheme is an optical cavity with one two-level atom with an energy gap
~ω between the main |0〉 and the excited |1〉 levels, where ω coincides with the frequency
of a photon of a certain mode held in the cavity. The interaction constant g between
an atom and a �eld is assumed to be small: g/~ω � 1 (in practice, this ratio should be
no more than 10−3) for the possibility of applying the RWA approximation, in which the
Jaynes-Cummings Hamiltonian of the "atom+�eld" system ([34]) has the form

H = HJC = H0 +Hint; H0 = ~ωa+a+ ~ωσ+σ, Hint = g(α+σ + aσ+), (94)

where a, a+ are the operators of photon annihilation and creation, σ, σ+ are the relaxation
and excitation of the atom. We will write the basic states of the atom and the �eld in the
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form |n〉ph|m〉at, where n = 0, 1, 2, ... is the number of photons in the cavity, m = 0, 1 is the
number of atomic excitations. We will have n = 0, 1, 2. We will consider several cavities,
and supply the cavity operators i with the subscript i, so that the total Hamiltonian will
be equal to the sum of

∑
i

Hi; the interaction of atoms with the �eld Hint in all regions

will then be equal, respectively, to the sum of
∑
i

Hint i.

The Hamiltonian will change during the execution of the coCSign gate: a term of the
form Hjump = ν(aia

+
j + aja

+
i ) will be added to its term Hint, meaning the transition of

a photon from the cavity i to the cavity j and vice versa, but the energy of independent
atoms and the �eld H0 will not change (the Jaynes-Cummings-Hubbard model JCH).
Therefore, the phase raid associated with H0 will be common to all states, and it can be
ignored.

Next, we will consider the phase raid relative to either the identical operator I, or
relative to σx, since all the operations discussed below are reduced to either the �rst or
the second with a phase change, so that the phase raid when applying, for example, −iσx
will be −π

2
.

Leta τ1 = π~/g, τ2 = π~/g
√

2 -are periods of Rabi oscollations for the total energy

~ω and 2~ω correspondingly. Operators Ut = e−
i
~Ht, induced by the evolution in the

important time instants will depend on the total energy of the cavity. If it equals ~ω, in
the basis |φ0〉 = |1〉ph|0〉at, |φ1〉 = |0〉ph|1〉at, we have:

Uτ1/2 = −iσx, Uτ1 = −I, U2τ1 = I, (95)

where σx is the Pauli matrix, and similar relations with the replacement of τ1 by τ2 for
the total energy of the cavity 2~ω.

When a photon is moved from the cavity j to the cavity i and vice versa, which is
realized by the simultaneous inclusion of Pokkels cells or similar devices in these cavities,
the addition of Hjump to the interaction of Hint is realized, which, in the absence of atoms
in the cavities, implements exactly the same dynamics as the Rabie oscillations,but with
the period τjump = π~/νi,j. We will assume that ν � g, so that it is possible to move a
photon from a cavity to a cavity so that the atom does not a�ect this process at all, so
that the phase incursion can be calculated using formulas similar to (95).

As noted in [38], this is di�cult to implement in an experiment, but there are reasons
to consider it a technical di�culty. If this condition is met, the phase gain for the σx
operator applied to the photons of the two cavities will be −π/2, as well as for half of the
Rabie oscillation.

Due to the incommensurability of the periods of the Rabi oscillations τ1 and τ2 we
can choose such natural numbers n1 and n2 that the approximate equality will be ful�lled
with high accuracy

2n2τ2 ≈ 2n1τ1 +
τ1

2
, (96)

which will be the basis for the nonlinear phase shift required for the implementation of
coCSing.
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Figure 52: The sequence of operations when implementing the com Sign gate: |x, y〉 →
(−1)x(y⊕1)|x, y〉 on asynchronous atomic excitations in optical cavities, δτ = τjump/2

8.5 Implementation of coCSign

The state of the qubit |0〉 is realized in our model as the state of the optical cavity of
the form |0〉ph|1〉at, and the state of the qubit |1〉 is realized as |1〉ph|0〉at. Thus, for the
state |10 rangle, which needs to invert the phase, has the form |10〉ph|01〉at, where the
�rst photon qubit belongs to the cavity x, and the second to the cavity y. Note that after
a time τ1/2, zero and one change places with the phase raid, which is included in H0, and
therefore is ignored.

The sequence of operations implementing coCSign is shown in Figure 52, and the
participating cavities are shown in Figure 53. First, we launch a photon from the cavity
x into an auxiliary cavity with an atom in the ground state and a vacuum state of the
�eld, then, with a delay of τ1/2, a photon from the cavity y, then, after a time of 2n2τ2,
we move a photon from the auxiliary cavity to the cavity x, then, after a time of τ1/2,
we move a photon from the auxiliary cavity to the cavity y. It follows from our choice
of photon travel times that at these moments there will be either one photon or none
in the participating cavities, so the inclusion of Pokkels cells on a small time interval
δτ = π~/2ν � τ1 will give exactly the movement of photons.

It follows from the previous calculations that at the energy of the central cavity ~ω
(initial states |00〉, |11〉), the phase incursion during the photon transfer back and forth
will be −π, and in interaction with the atom −π, so the total phase incursion will be zero,
as in the case of zero energy of the central cavity (initial state |01〉). For the energy 2~ω -
in the case of x = 1, y = 0, the transfer of two photons will give zero, and the interaction
will give −π

2
− π

2
= −π, which was required.

In the article [35], a calculation is given, from which it follows that to achieve sat-
isfactory accuracy of such entangling gates on nonlinearity in cavities, it is enough to
take the numbers of incommensurable periods n1, n2, not exceeding several tens, which
corresponds to the number of observed Rabi oscillations in optical cavities.

8.6 Implementation of single-qubit gates

For quantum computing, in addition to the coCSign entangling gate, one-qubit gates
are also needed. We will show how two gates can be implemented: the phase rotator
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Figure 53: Implementation of the gate coCSign

|x〉 → eiφx|x〉 and the Hadamard operator H : |x〉 → 1√
2
(|0〉+ (−1)x|1〉).

First, we note that the logical somersaults de�ned by us di�er only in the time of
the appearance of an explicit photon in the cavity. Let two waveguides, 1 and 2, be
connected to the cavity. Using the fast switching on and o� of the Pokkels cell, as above,
we can direct the photon along the waveguide 1, if the logical qubit is zero, and along the
waveguide 2, if it is equal to one.

The phase shifter changes the phase of the logical somersault, increasing it by the
angle φ, if and only if it is equal to one. For such a phase change, it is enough to extend
the waveguide 2, into which the photon will fall, if the logical qubit is equal to one. The
excess length is wound on the coil, so that at the output we will again have the same
photons, but the phase shift along the waveguide 2 will be equal to φ. Since the period
of the Rabi oscillations τ signi�cantly exceeds the photon wavelength, such an elongation
of the photon path in the second waveguide will not a�ect the determination of logical
qubits in any way.

Now let's move on to the Hadamard gate H. To implement it, we use a linear beam
splitter, shown in the �gure 54. This device implements the conversion of photons in
waveguides 1 and 2 of the form:

|n1m2〉 = 1√
n!m!

(a+
1 )n(a+

2 )m|0102〉 →
1√
n!m!

[ 1√
2
(a+

1 + a+
2 )]n[ 1√

2
(a+

1 − a+
2 )]m|0102〉,

(97)

where the subscript denotes the waveguide number. For n = 1,m = 0 or n = 0,m = 1,
that is, for one logical qubit, this transformation will exactly give the Hadamard operator.

Thus, one-qubit gates necessary for the implementation, for example, the Grover al-
gorithm, can be made on optical cavities, within the framework of the Jaynes-Cummings-
Hubbard model. The main di�culty is in the speed of operation of the Pokkels cell, which
seems to be technically surmountable.

105



Figure 54: The beam splitter.

The advantage of the proposed gate implementation scheme is its simplicity and the
possibility of accurately following the theoretical JCH model, which, despite the men-
tioned technical di�culty, inspires optimism in terms of scalability and comparison of the
theory of a quantum computer with experiments on a large number of qubits.

8.7 Density matrix

So far, we have considered either unitary evolution, or measurement is an idealized
scheme. In reality, quantum memory is closely surrounded by various particles and the
electromagnetic �eld of di�erent modes. For example, an atom in a cavity interacts with
a photon for a limited time, since the lifetime of a photon in a cavity is limited: it �ies
out of it outside. Upon contact with the environment, the state of |Ψ〉, which we will call
pure in the future, deteriorates in a speci�c way: it turns into a mixed state, which can
no longer be described as a state vector of |Ψ〉, but can only be described as a density
matrix. We will study it now.

Consider the matrix |Ψ〉〈Ψ| = ρΨ associated with the state |Ψ〉 of the form (110). This
is the Landau density matrix of a given state. It is Hermitian and its rank and trace are
equal to one. These three conditions on the matrix, in turn, mean that it has the form
ρΨ for some vector |Ψ〉 of the form (110). A listener is invited to prove these statements
independently. On the diagonal of the density matrix there are probabilities pj, and the
non-diagonal terms, called coherence, symbolize the quantum properties of a given state
|Ψ〉: if it is basic, it has no quantum properties, it is classical.

When the basis is changed, the density matrix is transformed according to the matrix
law: ρΨ → TρΦT

∗, where T is a unitary transition operator to a new basis.

In the continuous case, the density matrix is a function of the form
Ψ̄(r1, t)Ψ(r2, t), where r1, r2 is a pair of possible positions of the particle.

The Born rule is the only link between quantum formalism and experiments. We
cannot extract any information about the state in which a given particle is located other
than by making a measurement over it in some pre-selected basis.

To determine the amplitudes of theλj state of |Ψ〉, it is necessary to make many
measurements on many particles equally prepared in this state. Moreover, after the
measurement, the state of the particle changes irreversibly, so that, generally speaking,
we cannot use the same particle.
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It may seem that if we measure a particle in any basis, then after repeated measurement
we will get the same result, since the result of the projection of the state on the pre-
selected basis vector |j〉 has the form |j〉〈j| (prove it!) and its square is equal to the
same projection. But this is a gross mistake characteristic of Copenhagen physics, in
which formalism exists separately from reality. In fact, the measurement cannot exist
separately from the so-called unitary dynamics, (see below, the solution is the Schrodinger
equation) as well as unitary dynamics - without measurement. By measuring, for example,
a coordinate, we will inevitably give the particle such an impulse that it will �y away from
our laboratory, so we will have to re-measure the coordinate at another particle.

The Schrodinger equation for the density matrix has the form

i~ρ̇ = [H, ρ] = Hρ− ρH; (98)

it is equivalent to the usual Schrodinger equation and is easily derived from it. Thus, the
solution of the equation (98) is a unitary dynamics in the Hilbert space of states, that is,
the dynamics in the absence of decoherence, when we assume the absence of the in�uence
of the environment measuring the system.

8.8 An open quantum system. The quantum master equation

What happens when the system in question comes into contact with an environment
that does not have long-term memory, but is able to cause measurements of some part
of the system? This question is of great practical importance. For example, if an atom
emits a photon, and this photon �ies away, being in an entangled state with an atom, the
measurement of this photon will automatically lead to the appearance of a mixed state
of the atom, that is, it will cause decoherence, in which the atom must be described by a
density matrix.

We may not even know what happens to the emitted photon; maybe no one is watching
it, but it will be re�ected from a distant mirror and �y back to us again - all the same, if
it is not nearby, we must consider the state of the atom we have as mixed. A photon, once
emitted and not measured by anyone, will arrive again-well, the atom-photon system�it
will be in a pure state again, and if another photon arrives instead of ours, which got into
someone's detector, then we will have a density matrix of the mixed state of the composite
system.

That is, we can determine whether a photon has been measured only when it arrives to
us again. If we arrange an experiment so that a photon arrives at us at each repetition, we
can, by changing the basis, determine by tomography whether there was a measurement,
that is, whether it was the same photon that once �ew out of our atom, or another: when
detecting, the photon disappears.

However, this method is statistical. With its help, we can only check whether there is
a systematic measurement of outgoing photons in the same type of experiments, or there
are no measurements, and all the photons are re�ected from the mirror, �ying back to
us. For a speci�c case, it is impossible to draw such a conclusion: the conclusions of the
quantum theory are always only statistical.

The time change of the density matrix of a system interacting with a stationary en-
vironment that does not have long-term memory is described by a generalization of the
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Schrodinger equation for the density matrix, which is called the Kossakovsky - Lindblad
- Glauber - Sudarshan quantum master equation:

i~ρ̇ = [H, ρ] + iL(ρ), L(ρ) =
N2−1∑
j=1

γj(AjρA
+
j −

1

2
{A+

j Aj, ρ}) (99)

where the operators Aj are called decoherence factors, and must, together with an identical
operator, form an orthonormal basis in the N2- dimensional Liouville space of operators of
size N×N , in which the scalar product is de�ned by the formula 〈A|B〉 = tr(A+B). Here,
following the tradition, we denote the conjugate operator by a cross, and the non-negative
numbers γj are the intensities of the decoherence factor Aj.

This equation is a generalization to the quantum case of the main Markov equation
Ṗ = AP for the probability distribution P ; if a given dynamics of probability distributions
is considered in random processes, that is, the dynamics of the main diagonal of the density
matrix, then in quantum physics the entire density matrix is considered, and the physical
causes of such dynamics are investigated.

The numerical solution of the equation (99) can be carried out by the Euler method.
The fact is that the main term in the right part of [H, ρ] corresponds to the unitary
dynamics; this dynamics does not increase the magnitude of the error, so there are no
pathological cases of its rapid growth and, as a rule, there is no need to use more accurate
methods of the Runge-Kutta type. The solution can be represented as a sequence of
steps, each of which corresponds to the time tj, begins with the density matrix ρ(tj) and
consists of two actions:

1. The unitary dynamics of the density matrix is calculated

ρ̃(tj+1) = ρ(tj) +
1

i~
[H, ρ(tj)]dt.

2. The action of the Lindblad superoperator L on the ρ̃(tj+1):

ρ(tj+1) = ρ̃(tj+1) +
1

~
L(ρ̃(tj+1))dt.

The density matrix ρ(t) at any given time must be positive de�nite, Hermitian, and
have a unit trace. The last two conditions, in the presence of random errors, can be
easily provided by switching from a slightly corrupted matrix ρ(t) to a corrected matrix
(ρ(t)+ρ+(t))/tr(ρ(t)). To ensure positive certainty in case of random errors, it is possible
to calculate the eigenvalues once, for example, in 20 steps, and then, when a small negative
value appears, correct these values by redistributing the error to all other eigenvectors.
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9 Lecture 9. The complexity of quantum system ad the

accuracy of its description

9.1 Introduction

Our understanding of quantum theory has evolved greatly since its inception. If until
about 80-90 years of the 20th century, as a rule, simple, from the classical point of view,
systems were studied: individual atoms, molecules or ensembles consisting of identical
particles that could be reduced to separate independent simple objects, then in recent
decades the focus of research has shifted towards more complex systems. In particular,
the relevance of microbiology and virology has also aroused physicists ' interest in studying
objects related to living things, for example, the DNA molecule, which can no longer be
attributed to simple systems.

Meanwhile, quantum theory, which is the basis of our understanding of the micro-
cosm, and, therefore, an accurate understanding of complex systems, has a very rigid and
well-de�ned mathematical apparatus based on the matrix technique. The predictions of
quantum mechanics have always proved to coincide very precisely with experiments on
simple systems that are traditional for physics, but for complex systems this theory meets
a fundamental obstacle. The very procedure of obtaining theoretical predictions requires
such unimaginable computational resources that we will never have them at our disposal.

If for simple systems the procedure of computation the quantum state had no relation
to the physics of its evolution and was only a technical technique, then for complex systems
the situation is di�erent. Here, the computation process is the main part of the de�nition
of the quantum state itself, and therefore should be considered as a physical process, and
the device that implements this computation is an integral part of any experiment with
complex systems at the quantum level.

This computing device is an abstract computer that simulates the evolution of the
complex system under consideration. Thus, all restrictions on this computer, following
from the theory of algorithms, have the status of physical laws; and these laws have
absolute priority over physical laws in the usual sense in the case of complex systems and
processes.

This is a new situation that did not exist in classical physics, where the procedure for
obtaining theoretical predictions was not very complicated. In any case, the complexity
there has almost always been within the reach of classical supercomputers, which are cre-
ated mainly to cover processes from the point of view of classical physics - by the number
of particles in the system under consideration. In quantum mechanics, the complexity
increases exponentially with the number of particles, and the classical way of computing
becomes unacceptable. This was strictly proved by the discovery of theoretically pos-
sible (from the point of view of the standard - Copenhagen quantum theory) processes
that cannot be modeled on any classical supercomputers - the so-called fast quantum
algorithms ([18], [12]).

The attempt to circumvent the complexity barrier with the help of a quantum com-
puter proposed by R. Feynman ([36]) has given us a lot to understand the microcosm
and some interesting applications, for example, in cryptography and metrology. However,
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this attempt did not solve the main problem: the scaling of a fully functional quantum
computer is very questionable due to decoherence. Decoherence occurs as a result of spon-
taneous measurements of the states of the simulated system from the environment, which
is traditionally considered in the framework of the concept of an open quantum system
in contact with the environment (see [37]), so that the in�uence of the environment is
reduced to uncontrolled measurements of the state of the original system.

Thus, decoherence is a fundamental factor that cannot be eliminated with the help of
mathematical techniques, such as error correction codes (they begin to really work only
for a quantum computer with more than a hundred qubits). If we set the task of modeling
complex systems at the quantum level, decoherence should be embedded in the quantum
formalism itself, and not introduced into it as an extraneous in�uence. The deviation
from the linear unitary law of evolution resulting from decoherence must be naturally
justi�ed mathematically.

There is a complexity barrier to matrix formalism.

The more precisely we know the amplitudes of the quantum state, the simpler it should
be. If the state is complex, we will not be able to determine its amplitudes exactly. Given
a system of n particles - qubits, to apply quantum mechanics we try to learn their state
as precise as possible.

A quantum state |Ψ〉 cannot be the state of a single system of qubits; the wave vector
is a characteristic of a huge number of equally prepared such systems. Thus, the state of
|Ψ〉 characterizes a certain imaginary apparatus that produces exactly the same ensembles
consisting of n qubits.

The accuracy of the quantum state is the accuracy of determining its amplitudes of the
basic states using measurements: the more copies of the state we have, the more accurately
we can determine these amplitudes by simultaneously measuring all these copies.

Let there be a system of n qubits about which we think that it is in the quantum state
|Ψ〉. We will call the accuracy of this state the maximum possible number of such equally
prepared ensembles. The accuracy of a state is thus the maximum possible number A of
copies of this state that can be available to us at the same time, when we can measure
them.

We arrange such n qubit ensembles Sj having the same states in the form of a sequence
of nA qubits of the form

S1, S2, ..., SA, Sj = (sj1, s
j
2, ..., s

j
n),

thus obtaining the memory of some anstract Main Computer (MC), from which we can
learn what this state is. The memory of MC cannot be unlimited, hence there is the
constant Q, such that

An ≤ Q. (100)

But the number n of qubits cannot be the exact measure of the complexity of the
state |Ψ〉, even if these qubits are all entangled. To de�ne the real complexity we have to
use the so called canonical transformation, which can radically reduce the number n of
qubits without changing the state |Ψ〉 substantionally.
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For the right de�nition of complexity of a state |Ψ〉 the following inequality takes
place:

AC ≤ Q. (101)

We will argue in favor of such a ratio of complexity and accuracy in the general case,
for complex particles; in particular, we will show that the quantization of the amplitude
makes it possible to introduce a certain determinism into the quantum formalism, the
nature of which is not reduced to the classical one.

10 The Main Computer

A complex system is a system whose behavior cannot be reduced to independent
particles. Predictions of the behavior of such a system can be obtained only by relying on
quantum mechanics and computer ideology, since analytical techniques do not work here.
Therefore, we must introduce the concept of a Main Computer (MC), which adequately
represents real processes for us - an abstract computing device, the laws of which will be
for complex systems (and only for them!) have priority over physical laws, the scope of
which is unconditionally limited to simple systems and processes.

A physical prototypes of a Main Computer can have only limited power; such devices
will be able to adequately represent the processes traditionally related to chemistry, as
well as to those areas of physics in which quantum methods are successfully applied, for
example, to electrodynamics. Nuclear physics does not yet belong to such processes, and
its complexity radically exceeds the electrodynamics complexity (see [39]).

Thus, we have, within the framework of this limitation of the computational capabil-
ities of the MC, a balance between the complexity and accuracy of the representation of
the state vector, which must be found speci�cally in each speci�c case.

For one qubit we can �nd its amlitudes with the most possible precision. For the
simple systems with low complexity, which was in the focus of attention of the physics of
20th century, the possible precision was equal to the accuracy of experimental results. For
such systems with of intermediate complexity we were able to determine the amplitudes
more accurately. For the more complex systems, as the prototypes of quantum computer,
we already meet di�culties that is called the decoherence. For an extremally complex
system A = 1 and we have only one sample of it; we can make only one measurement,
which means that we can receive only one basic state. The �gure 55 represents these
cases.

10.1 Complexity of the quantum state

In order to give a correct de�nition of the complexity of the quantum state of a system
of n particles, we must �rst consider the canonical transformation - the main method of
reducing such complexity.

Any coordinate on a unit segment is a real number represented as its binary expansion
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Figure 55: Representation of the state vector. Curves represent the hypothetic wave
function |Ψ〉, predicted by Copenhagen quantum theory. Rectangles denote the informa-
tion about it, which we can obtain via MC. Bottom left - the main computing resource
captures accuracy: |Ψ〉 = λ0|0〉 + λ1|1〉; idealized case where we reduce the number of
basic states to 2, as for a particle in two hole potential - this gives the satisfactory agree-
ment with experiment. The top - the resource is divided equally between accuracy and
complexity. The best agreement with experiments; there is the typical area of applica-
tion of quantum mechanics. Bottom right - the main resource is captured by complexity:

|Ψ〉 =
N−1∑
j=0

ε|j〉, ε ∈ {0, ε}. Our knowledge is limited by only one basic state, which we ex-

tract from the single measurement. Here we have to follow the trajectory of one quantum
of amplitude (see below).
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2−l
l−1∑
j=0

aj2
j with an accuracy of 2−l, where aj = 0.1 are the values of l qubits representing

this coordinate2 By ordering the qubit values lexicographically, we get a standard ordering
of basis vectors, in which any operator will have a certain matrix.

Let the classical state of the particle i be the real vector xi. Then the classical state
of the system of n particles will be a vector of the form x̄ = (x1, x2, ..., xn). Let x̄′ and
x̄” be two vectors with non-empty sets of coordinates such that their Cartesian product
coincides with x̄. This means that we have split the set of particles into two non-empty
subsets X ′ and X”, so that the given vectors are the sets of coordinates of these subsets.
Let H(x̄) be the Hamiltonian of this system, having the form

H(x̄) = H1(x̄′) +H2(x̄′′); (102)

here, we assume by default that H(x̄′) is H(x̄′)⊗ I(x̄”), that is, on particles not included
in the �rst subset, this term of the Hamiltonian acts as an identical operator, and similarly
with the second term. Then we call the HamiltonianH reducible. LetX ′ be the maximum
subset of the components of the vector x̄ in terms of the number of elements, such that
the equality (102) holds, and the Hamiltonian H1(x̄′) is not reducible. Then X ′ is called
the kernel of the given Hamiltonian.

We will assume by default that any quantum evolution begins with the basic state of
the system under consideration. Since (102) implies the equality exp(− i

~H) = exp(− i
~)H1⊗

exp(− i
~)H2, we see that the core of the Hamiltonian is the maximum set of particles whose

states in quantum evolution with the Hamiltonian H can be entangled; we denote the
number of particles in this set by ν(H), and call it the naive complexity of this Hamilto-
nian.

Consider the transformation of the coordinates of the particles of the form

qi = qi(x1, x2, ..., xn), i = 1, 2, ..., n; (103)

denote q̄ = (q1, q2, ..., qn) and letHq = H(x1(q̄), x2(q̄), ..., xn(q̄)) is the original Hamiltonian
written in terms of the new variables qi, x̄ = x̄(q̄) is the inverse of (103). We will introduce
virtual particles with coordinates q1, q2, ..., qn, which we will call quasiparticles.

The classical state of the source system is a set of speci�c values x1, x2, ..., xn. Then
each classical state will correspond to the classical state of the same system, obtained
using the formulas (103). The basis vector of a Hilbert space passes into another basis
vector of the same space. The standard ordering of the basis vectors, according to the
qubit representation of coordinates, will pass to another ordering, that is, the coordinate
transformation (103) is a permutation of the basis vectors of the Hilbert space of quantum
states.

In this case, the qubits representing the coordinate values will already have a di�erent,
new meaning. In the new coordinates, for quasiparticles, the Hamiltonian will have a

2To represent a coordinate on any other segment, we need to apply a suitable linear transformation, for

example, on the segment [−2l/2, 2l/2] the approximate qubit representation looks like this: 2−l/2
l−1∑
j=0

aj2
j−

2l/2−1.
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di�erent form Hq. We will call the coordinate transformation (103) canonical if ν(Hq)
is minimal. In this case, the transition to quasiparticles will mean a reduction in the
complexity of the original Hamiltonian. So, the canonical transformation is a permutation
of the bisis vectors that minimizes the complexity of the Hamiltonian.

10.2 Example: the system of interacting harmonic oscillators

We will consider the concept of a quasiparticle, within the framework of the so-far
ordinary quantum theory, on the model problem of a system of interacting harmonic
oscillators. This task was chosen because of its special importance for everything further.
For one oscillator, the Hamiltonian has the form H = p2

2m
+ mω2q2/2; its eigenfunctions

have the form

Ψn(x) =
1√
2nn!

(mω
πh

)1/4

exp(−mωx2/2h)Hn(x
√
mω/h) (104)

where Hermite polynomials Hn = (−1)nex
2 dn

dxn
e−x

2
, and the corresponding eigenvalues of

the energy En = hω(n+ 1/2).

Consider a system of N harmonic oscillators interacting with each other according to
Hooke's law. Such a system can be, for example, a chain of positive metal ions in a Paul
trap. The Coulomb interaction between them, if we consider small �uctuations near the
equilibrium position, gives quadratic potentials, that is, we can approximately assume
that the force between the ions obeys Hooke's law.

Let un denote the deviation of the oscillator n from its equilibrium position. The
Hamiltonian of such a system has the form

H =
∑
n=1

N(
p2
n

2m
+ κu2

n)− κ
N∑
n=1

unun+1

which is obtained from subtracting the Hooke forces −κ(un − un+1) over all n, with the
reduction of similar terms (so it turns out unun+1) and neglecting boundary e�ects.

The struggle against entanglement is the struggle against interaction. The essence of
the canonical transformation is to get rid of the interaction member unun+1. This term
should not be for quasiparticles - these new "particles" should be independent of each
other. It turns out that the Fourier transform is suitable for this purpose, but not over
the wave function, as it was during the transition from the coordinate to the pulse basis
in the Hilbert state space, but over the amplitudes un of oscillator oscillations themselves.

The role of the r coordinate here will be played by n - the number of the oscillator, and
the role of the psi function will be played by un. The values of this psi function are also
called amplitudes, so there is complete agreement with linguistics here. However, the fact
that the "coordinate" of n and the "amplitude" of un are r and Ψ(r) is not just a funny
analogy. He talks about the nature of the quantum amplitude and its deep connection
with the role representation of real particles. Mechanical oscillatory amplitudes un cannot
be complex, like quantum amplitudes. And the classical oscillation equation describing
the dynamics of oscillators also cannot be a prototype of the Schrodinger equation.
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Therefore, oscillators are not suitable as a basis for a complete model of quantum dy-
namics in the general case. However, they are suitable as a model of the electromagnetic
�eld, the interaction with which gives a complete picture of the dynamics of particles,
which turns out to be the dynamics of "particles + �elds". The �eld turns out to be
a refuge of determinism. Quantum chaos is connected precisely with the fact that the
amplitudes there will be complex; this is due to the chaotic nature of the particles them-
selves, and this cannot be overcome in the same way as in the case of the deterministic
world of oscillators. This means that we will have to quantize the �eld, that is, the system
of oscillators, which will, in fact, be the propagation to the �eld of the internal stochastic
behavior that was originally characteristic of matter particles.

So, the canonical transformation in our case looks like this:

un =
1√
N

∑
q

Uqe
−iqnd, (105)

and the reverse to it:

Uq =
1√
N

∑
n

une
iqnd, (106)

where d = 2π/N . Using the de�nition of impulse pn = h
i

∂
∂un

and the di�erentiation
rules, we can derive formulas for impulse transformations of the form

pn =
1√
N

∑
q

Pqe
iqnd, (107)

and the reverse to it:

Pq =
1√
N

∑
n

pne
−iqnd, (108)

where Pn = h
i

∂
∂Un

. The fact that we have allowed complex amplitudes here is not
signi�cant, because we will now return to the real numbers, which could not be done if
we had a psi function instead of un.

The canonical transformation is linear, and translates any small cube of division of the
con�guration space into an equally small parallelepiped, so that instead of one division,
another will arise. Moreover, our transformation of the form (105) will even be orthogonal,
that is, as we will see below, the cubes will turn into cubes. Therefore, we can always
represent it as a permutation of the basis vectors of the Hilbert space.

We also shift the origin of coordinates for q so that this parameter, which replaces
n, takes values from a symmetric interval. Then instead of q + q′ = N , we will write
q+q′ = 0. The inequality relation is induced from the old set 1, 2, . . . , N so that the pairs
q > −q are almost half (we neglect the edge e�ect everywhere)
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By rewriting the Hamiltonian in the new coordinates, we have:

H =
N∑
n=1

1
2mN

(
∑
q,q′
PqPq′e

1(q+q′)nd) + K
N

∑
q

UqUq′

−K
N

∑
q,q′

(UqUq′e
−iqnde−iq

′(n+1)d) =

= 1
2mN

∑
q

PqP−q − K
N

∑
q,q′
UqUq′(

N∑
n=1

e−ind(q+q′))e−iq
′d + K

N

∑
q

UqUq′ =

= 1
2mN

∑
q

PqP−q − K
N

∑
q

UqU−qe
+iqd + K

N

∑
q

UqU−q =

= 1
2mN

∑
q

PqP−q + 2K
N

∑
q>−q

UqU−q(1− cos(qd)).

Here K = mω2/2, the standard formula for summing the exponential geometric progres-
sion was used, which gives 0 in the case of q 6= q′, and the pairs q,−q were ordered, so
that we explicitly wrote out only half in which q > q′ - hence the coe�cient 2 in the last
term.

Now let's move on once again to the new variables, this time - real:

Uq = Xq + iYq, Xq = Uq+U−q
2

, Yq = Uq−U−q
2i

;
Xq = 1√

N

∑
n

uncos(qnd), Yq = 1√
N

∑
n

unsin(qnd),

∂
∂Uq

= ∂
∂Xq

1
2

+ ∂
∂Yq

1
2i
,

∂
∂U−q

= ∂
∂Xq

1
2
− ∂

∂Yq
1
2i
,

∂2

∂Uq∂U−q
= 1

4

(
∂2

∂X2
q

+ ∂2

∂Y 2
q

)
.

Finally we get

H = − 1

4mN

∑
q>q′

(
∂2

∂X2
q

+
∂2

∂Y 2
q

)
+

2K

N

∑
q>−q

(X2
q + Y 2

q )(1− cos(qd)).

We see that in the new coordinates, our system is a set of independent harmonic mass
oscillators m̃ = 2m, with a new coe�cient K̃ = 2K(1− cos(qd)) and frequencies

ω̃q =

√
2K

m
(1− cos(qd) (109)

10.3 Quasi particles

The transition to the description of evolution in the form of quasiparticles has the
form H = τ−1Hqτ where τ is the transformation of the transition to quasiparticles un-
der the canonical transformation. Then the representation of the evolution operator
is exp(− i

~Ht) = τ−1exp(− i
~Hqt)τ requires less computational resources than the direct

calculation of exp(− i
~Ht), since the main resource is spent on the kernel, which for a

quasi-partial representation will have a minimum size. Quantum representation of quasi-
particles is shown at the �gure 56

An example is a chain of interacting harmonic oscillators, for which the Fourier trans-
form of their coordinates xi is canonical, and the kernel of the quasiparticle representation-
in terms of phonons - will generally consist of a single particle, that is, the phonons are
all independent. Here we have the maximum reduction of the kernel.
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Figure 56: Quantum representation of quasiparticles

A simpler example would be the Hamiltonian H of a closed chain of 4 interacting
qubits, which is reduced by the canonical transformation CNOT to a completely reduced
Hamiltonian of the form Hq = σ

(1)
x ⊗ I2 + I1σ

(2)
x :

H =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 = CNOT


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

CNOT.

Note that the permutation of the basis vectors, which is a canonical transformation, must
be an entangling and simultaneously disentangling operator in the state space, since it
reduces the kernel of the Hamiltonian. So, for example, the CNOT operator applied
repeatedly to the state |00...0〉+ |11...1〉 completely untangles this state.

The opposite example is given by the Tavis-Cummings Hamiltonian for n two-level
atoms interacting with the resonant mode �eld in the optical cavity. Here there is a
basic state of the �eld and atoms of the form |n〉ph|00...0〉at, such that the column of the
Hamiltonian matrix corresponding to this state consists of the numbers g

√
n and one

number n~ω, and such a column is the only one. No Hamiltonian of the form (102) can
have this property even at n = 2, so there is no non-identical canonical transformation
for the Tavis-Cummings Hamiltonian.

The quantum complexity of the Hamiltonian H, denoted by c(H), is the minimal naive
complexity of the operators τ−1Hτ over all possible permutations τ of basis vectors. For
the above examples, the complexity of the Hamiltonian is 1, that is, it can be completely
reduced by the canonical transformation.

The complexity of the quantum state |Ψ〉is determined in a similar way. Its naive
complexity is ν(|Ψ〉) is de�ned as the number of particles in the maximum tensor divisor
|Ψ1〉 of the state |Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉.

The quantum complexity C(|Ψ〉) of the state |Ψ〉 is the minimal naive complexity of the
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state τ |Ψ〉 over all permutations τ of particles. In other words, the quantum complexity
of C(|Ψ〉) of a state is the logarithm of the kernel length of that state in the canonical
representation.

For example, the quantum complexity of the generalized GHZ state |GHZ〉 = 1√
2
(|00...0〉+

|11...1〉) is equal to 1, since it can be untangled by successive CNOT operators. If we start
from the basic state |Ψ(0)〉 in the canonical representation of the HamiltonianH, then an
evolution with H will only contain states with a complexity of no more than C(H).

The quantum complexity of the Hamiltonian has a clear algorithmic meaning. Suppose
we model quantum evolution on a classical supercomputer with an unlimited paralleliza-
tion resource. Then, for the reduced Hamiltonian, you can parallelize such a simulation by
assigning separate nodes of the supercomputer to simulate separate groups of variables.
Thus, the node that will be assigned the most di�cult task will be the one that will be
assigned the kernel of the Hamiltonian. We can say that the classical complexity of the
Hamiltonian is the memory size of a single node of a classical supercomputer that can
simulate quantum evolution with a given Hamiltonian. The quantum complexity of the
Hamiltonian is the logarithm of this value.

10.4 Amplitude granularity

Here we show the possible way how to prolong quantum formalism over the border Q.
This is the kind of quantum determinism that is not reducible to the known quasiclassical
e�ects.

The qubit representation of the classical coordinates and impulses determines the grain
size of the amplitudes. For any expansion of the quantum state |Ψ〉 over an arbitrary
orthonormal set of basis states |ψj〉 of the form

|Ψ〉 =
∑
j∈J

λj|ψj〉, λj 6= 0, (110)

the amplitudes of λj must be bounded from below modulo some nonzero constant.

To preserve the principle of linearity in the region where the nonzero value of this
constant does not play a role, we must assume that any amplitude has the form

λj = εnj + iεmj (111)

where nj,mj ∈ Z are integers, ε > 0 is a constant that is the quantum of the amplitude.
This restriction of the matrix formalism entails the rejection of the absolute equivalence
of any bases in the space of quantum states, which also manifests itself only at su�ciently
small amplitudes λj, and, accordingly, large sets of coherent states J .

However, modeling does not provide for such equivalence of bases; it is only an alge-
braic technique that cannot be experimentally tested for complex systems. The smallest
modulo possible nonzero amplitude is thus ε. This restriction is very well consistent with
the probabilistic nature of the state vector, since to determine the value of |λj|2 with
an accuracy δ, it is necessary to conduct about 1/δ measurements of equally prepared
samples of the original system; for complex systems with small amplitudes of λj, this will
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be possible only if the minimum probability ε2 is separated from zero to obtain the most
unlikely outcome.

You can determine the value of ε by "smearing" the amplitude over as many basic
classical states of the system as possible, for which the presence in them can simply be
detected by measurement. If all the amplitudes are equal to: λj = ε, we get for the
total number of coherent basis states the estimate |J | = [1/ε2] - as the integer part of the
inverse square of the amplitude quantum. In the (110) expansion, the amplitudes of λj
have no physical dimension, the dimension has the basis states of |ψj〉. The number of
qubits whose possible quantum states are physically realizable is equal to the constant q,
for which we get the expression Q = log2([1/ε2]).

We can now formulate a hypothesis about the relation of the form "accuracy - com-
plexity" in the �nal form:

C(|Ψ〉)A(|Ψ〉) ≤ Q, (112)

and q is the maximum number of completely entangled qubits that cannot be disentangled
by any permutation of the basis states.

Consider, as an example, the state of a set of n qubits of the form

|ΨGSA(t)〉 = α
∑

j 6=j0,0≤j<N

|j〉+ β|j〉, (113)

where α = cos(t)/
√
N − 1, β = sin(t) for some t, and N = 2n. The quantum complexity

of this state is n if t 6= kπ/2 for no integer k. Indeed, this superposition has the property
that all its basic components, except for exactly one, have the same non-zero amplitude,
and one has a di�erent amplitude from them.

This property is preserved under any permutation of the basis states, that is, under
any quasiparticle representation. But if the state is reducible, then it should have the form
λ1|i1〉 + λ2|j2〉 + ...)⊗ (λ3|j3〉 + λ4|j4〉 + ...) for some basis |ji〉, and such a superposition
cannot contain exactly 2 amplitude values for any basis states, since there must either
be at least 3 di�erent non-zero amplitude values of the components, or it must have only
two di�erent non-zero amplitude values that correspond to two groups of basis states
containing an equal number of terms. Both of these possibilities are excluded for states
of the form (113).

Note that the discrete representation of amplitudes in the form of (117) allows us
to naturally include state measurements in its unitary evolution. The hard contact of
the system in the state |Ψ〉 =

∑
j∈J

λj|j〉 with the measuring device means the inclusion

of the states of this device in the system, that is, the transition to the state of the
extended system of the form |Ψex〉 =

∑
j∈J,νj∈Nj

µj,νj |j, νj〉, where, under the condition of

the applicability of quantum mechanics, all µj,νj must be minimal, which means that the
quantum of the amplitude of εis equal. Since contact with the environment is a unitary
evolution, we have |λj|2 =

∑
νj∈Nj

|µj,νj |2 that is, the measurement will be an arbitrary

choice of one of the states of the νj meter and we get the standard urn scheme from
probability theory.
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10.5 Experimental �nding of a constant Q

You can �nd the approximate value of Q by the building the state of the form (113).
These states have the memory of a quantum computer when implementing the Grover
GSA algorithm with a single target state |j0〉 (see [12]). Let N = 2n. We put t0 =
arcsin(1/

√
N). We start with

|Ψ(0)〉 =
1√
N

N−1∑
j=0

|j〉 = (
1√
2

(|0〉+ |1〉)⊗n,

and the complexity of this state is 1; this is the initial state for the GSA algorithm. As
soon as the �rst step of the algorithm is performed, t becomes equal to t0 and we get a
state of complexity N , of the form (113). Already at the �rst step of the algorithm, the
complexity jumps from one to the maximum total number n of qubits. If n = Q, at the
�rst step of the GSA algorithm, we will go beyond the limits of acceptable states with
ampitudes of the form (117), which have the property (112).

Thus, we can estimate the constant Q from above, increasing the value of n to the
limit when the GSA stops working correctly. Here, by correct operation, we mean the
possibility to raise the amplitude of the target state by an amount of the order of 1/

√
2

compared to the others, which can be �xed by quantum tomography, since the amplitudes
of other states will have the order of 1/

√
N . For a more rough estimate, �xing the jump

in the amplitude by 1/
√
N compared to the main mass is also suitable, but this is only

possible for small n, not exceeding 20.

The Figure 57 shows the border of the grover algorithm work in terms of amplitude
quanta.

The question of what will happen to the real state if the amplitudes calculated ac-
cording to standard quantum theory become less than ε is formally open. However, it is
natural to assume that small amplitudes should simply disappear, with a corresponding
renormalization of the remaining state. This means that implementing GSA near the
boundary of n ≈ Q we will get the target state very quickly, much faster than when
implementing GSA in a normal model. However, this will only happen with an ideal im-
plementation of GSA; in practice, the amplitudes of the main mass of states in |ΨGSA(t)〉
in (113) cannot be exactly the same, so that zeroing will not occur simultaneously for all
states, which can greatly distort the picture.

For the experimental detection of such an e�ect, it is necessary to �ne-tune the gates
so precisely as to achieve the maximum possible dimension Q of the quantum kernel.
Below we will discuss the estimates for this constant.

Let's consider two processes: the transition of the states of an electron in an atom
Rb85 and the decay of an unstable nucleus He6. The �rst process is described by quantum
electrodynamics quite accurately, a complete quantum description of the second is not yet
available.

We will proceed from the criterion of accurate drawing of the wave function, when
each step of its computer description requires one new basic state. This follows from
the speed of the quantum walk, in which the wave front propagates at a linear speed (in
contrast to the classical walk, in which the speed is proportional to the square root of
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Figure 57: Limitations on the work of GSA in terms of amplitude quanta

time). Let t be the total time of the process, dt be the step of the computer description
of this process in time, then the number of basic states necessary for "accurate drawing"
of the process will be N = t/dt. The values of t are determined experimentally, and dt is
found from the energy-time uncertainty ratio.

For the Rabi oscillation of the rubidium atom, which occurs with the emission of a
photon with a wavelength of approximately 1.4 cm, we have:

ω ≈ 1010 sec−1, EQED = ~ω ≈ 10−17, dt ≈ ~/EQED = 10−10.

Given the time of the Rabi oscillation t ≈ 10−6 sec, we get N = t/dt ≈ 104. Then
Q ≥ 104 < 214 and for a good representation of this process on the basis of quantum
theory, it is enough to work GSA on 14 qubits, which seems real.

Now let's consider the decay of the nucleus of the helium isotope:

He6 → He5 + n→ He4 + 2n

(in this rough approximation, we take into account only the nucleons). The characteristic
energy value will be about 10 Mev ≈ 10−5 erg, and the energy-time uncertainty ratio
will give dt ≈ 10−22 sec. The whole process takes about 1.6 sec, from where N = t/dt ≈
1022 ≈ 273, and if quantum mechanics can be continued to nuclear processes such as the
decay of the helium - 6 isotope to a stable isotope 4, GSA should work well already at 73
qubits.

The decay of the helium 6 isotope is a very complex process from the point of view of
quantum mechanics. We can only consider its last stage, when one neutron is split o� from
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the stable helium 4 nucleus (see [40]). It takes about 10−11 sec. For it, estimates similar
to the above will give about 36 qubits of a reliable implementation of GSA, which is less
realistic, but the corresponding value of Q ≈ 36 can already be veri�ed by experiments
on GSA.

Thus, the acceptance of the amplitude grain hypothesis directly connects the question
of the applicability of quantum theory to real microprocessors and the implementation of
GSA. The implementation of GSA thus becomes a central issue of quantum theory and
the theory of complex systems as such.

10.6 The grain of the amplitude as the cause for the measure-

ments

The measurement of the quantum state | Psi〉 =
∑
j∈J

λj|j〉 is a random variable that

takes the values |j〉, j ∈ J with probabilities |λj|2. Physically, it begins with the contact
of the original system with the meter, that is, a unitary transformation of the form

|Ψ〉|0̄〉meas →
∑
j∈J

λj|j〉
∑
ij∈Ij

µij |ij〉meas. (114)

If the number of elements in each set of states of the meter Ij is very large, so that
the amplitudes of all speci�c states of the meter become approximately equal to the grain
ε:
∑
ij∈Ij

µij ≈ ε, then due to the unitarity of the transition (114), the numbers of elements

of the sets Ij become proportional to the probabilities |λj|2 getting the result of |j〉 in
the dimension. Therefore, measurement means choosing at random from the urn scheme,
giving the probabilities of the outcome in accordance with the Born rule.

So, the presence of a grain removes a strange barrier between unitary dynamics and
the collapse of the wave vector, which is a hindrance for modeling dynamics, since the
use of a quantum basic equation requires a quadratic increase in memory resources in
computer modeling compared to unitary dynamics, since it is necessary to store a density
matrix in memory instead of a state vector.

In the limiting case, with a complete collapse at each step of evolution, we will get a
completely deterministic description of the dynamics if there is some superiority of the
amplitude of a single state |jtar〉 over all others, as in Grover's algorithm. The basic states
of |j〉, in this case, generally speaking, must be nonlocal due to the fundamental quantum
nonlocality; we have already discussed it above. This form of description of dynamics is
quite unusual, but it is most likely that it will be adequate for real complex systems that
are the subject of a quantum computer project.

10.7 Equilibrium states

We will begin by describing the classes of states for which the amplitude quantization
is introduced in the most visual way.
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For a complex number z = a+ ib, a, b ∈ R, we introduce the notation {z} = |a|+ |b|.

For the quantum state |ψ〉, we de�ne {ψ} =
N−1∑
i=0

{〈i|ψ〉}.

Let A be a linear operator, and |j〉 be some basis vector, j ∈ {0, 1, ..., N − 1}. De�ne
|aj〉 = A|j〉. We call the state vector |Ψ〉 equilibrium with respect to the operator A, if all
the numbers {aj} are the same for all the base components |j rangle that are included in
it with nonzero amplitudes.

As an example, consider the Hamiltonian of a one-dimensional particle moving in the
potential V : H = p2

2m
+ V . We will reduce the matrix of this Hamiltonian, assuming that

there are no too long transitions of a given particle in space. Then the equilibrium states
in the coordinate basis for this Hamiltonian will be exactly the states |Ψ〉, all the basis
components of which have the same potential.

An important class of multiparticle equilibrium states are connected states. Here is
an example of such a state. Consider k of two-level atoms in an optical cavity holding
photons with the transition energy between the ground and excited levels of the atoms.
We choose a basis consisting of vectors of the form |n〉ph|m1,m2, ...,mk〉at, where n is
the number of photons in the cavity, mj ∈ {0, 1〉 is the state of the atom j, ground and
excited. Let gj, j = 1, 2, ..., k be the forces of the interaction of atoms with the �eld.
Then the dynamics of the system of atoms and the �eld under the condition gj/~ω � 1,
where omega is the frequency of the cavity, will obey the Schredinger equation with the
Tavis-Cummings Hamiltonian in the RWA approximation:

HRWA
TC = ~ω(a+a+

k∑
j=1

σ+
j σj) + a+σ̄ + aσ̄+, σ̄ =

k∑
j=1

gjσj, (115)

where a, a+ are the standard �eld operators of photon annihilation and creation, and
σj, σ

+
j are the atomic relaxation and excitation operators of the atom j. The connected

states in such a system will be for k = 2 only for g1 = g2, and this will be either one of
the basic states, or the states |n〉ph(α|10〉at +β|01〉at), of which in all but the singlet state
β = −α the atoms will interact with the �eld. All such states will be in equilibrium.

The general de�nition of connectivity looks like this.

Let H be a Hamiltonian in the state space of n qubits. If a qubit is associated with a
real or virtual two-level particle, H can be, for example, the Tavis-Cummings Hamiltonian
or some modi�cation of it. Let Sn be a group of permutations of qubits that are naturally
extended to operators on the entire space of quantum states H, namely: on the basis
states, the permutation η ∈ Sn acts directly, and η

∑
j

|j〉 =
∑
j

η|j〉.

Denote by GH the subgroup Sn consisting of all permutations of qubits τ such that
[H, τ ] = 0. Let A ⊆ {0, 1, ..., 2n−1} be a subset of the basis states of the n - qubit system.
Its linear shell L(A) is called a connected subspace with respect to H if for any two states
|i〉, |j〉 ∈ A there exists a permutation of qubits τ ∈ GH such that τ(i) = j. The state of
a |Ψ〉 n - qubit system is called connected with respect to H if it belongs to a connected
subspace with respect to H, and H|Ψ〉 6= is0.

The connectedness of a state means that all its nonzero components are obtained from
one another by permutations of those particles that behave in the same way with respect to
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a given Hamiltonian. The above example of the state |n〉ph(α|10〉at+β|01〉at) will obviously
be connected, since the permutation of atoms interacting equally with the �eld does not
change the Hamiltonian. The states of the form |n〉ph(α|10〉at+β|01〉at+c|00〉at+d|11〉at),
for non-zero values of the amplitudes a, b, c, d will not be connected.

Lemma.

If |Ψ〉 =
∑
j

λj|j〉 is connected with respect to H, then any two columns of the matrix

H with numbers j1, j2, such that λj1 and λj2 are nonzero, di�er from each other only
by the permutation of elements. The same is true for the unitary evolution matrix Ut =
exp(− i

~Ht).

Indeed, for such basis states j1 and j2, according to the de�nition of H - connectivity,
there exists τ ∈ GH such that j2 = τ(j1). The columns numbered j1, j2 consist of the
amplitudes of the states H|j1〉 and H|j2〉, respectively. From the commutation condition,
we have τH|j1〉 = Hτ |j1〉 = H|j2〉, and this just means that the column j2 is obtained
from the column j1 by the permutation of elements induced by τ . Moving on to the
evolution matrix Ut, we see that the switching relation τUt|j1〉 = Utτ |j1〉 = Ut|j2〉 will
hold for it as well, which is what is required. Lemma is proven.

It follows from Lemma that the states connected with respect to the Hamiltonian H
are equilibrium with respect to H and with respect to the evolution operator Ut = e−

i
~Ht

corresponding to this Hamiltonian.

10.8 Amplitude quanta and determinism

The exact description of the dynamics, even in the classical framework, has some
degree of nondeterminism or stochasticity (see [41],[42]). The advantage of the quantum
language lies in the precise limitation of this stochasticity to the state vector, which,
according to the main thesis of Copenhagen mechanics, provides an exhaustive description
of the dynamics of microparticles.

The possibility of introducing determinism into quantum theory, which interested
researchers at the beginning of the history of quantum physics, has not lost the interest of
researchers (see [43]) and is again becoming relevant for complex systems; for example, for
systems of extreme complexity, the DNA molecule determines the trajectory of its owner
with an accuracy unattainable in physical experiments. This higher type of determinism
must have an analog for the simple systems described by standard quantum theory.

We describe a possible speci�c form of determinism at the level of amplitude quanta.

Our goal is to show that if the state |Ψ〉 is equilibrium with respect to the evolution
operator Ut, then the amplitudes of all the basic states in |Ψ〉 can be divided into small
portions - quanta of amplitude, so that for each quantum its trajectory will be uniquely
determined when Ut acts on a previously �xed time interval t, in particular, it will be
uniquely determined also, which other quantum of amplitude it will contract with when
summing the amplitudes to obtain the subsequent states.
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This fact is also true for the arbitrary operator A, for which we will formulate the
quantization of the amplitude.

Let |Ψ〉 be an arbitrary equilibrium state with respect to A, the decomposition of
which in terms of the basis has the form

|Ψ〉 =
∑
j

λj|j〉. (116)

We introduce the important concept of the amplitude quantum as a simple formal-
ization of the transformation of a small portion of the amplitude between di�erent basis
states when multiplying the state vector by the matrix A. Let T = {+1,−1,+i,−i} be
a set of 4 elements, which are called amplitude types: real positive, real negative, and
similar imaginary ones. The product of types is de�ned in a natural way: as a product
of numbers. The quantum of the amplitude of the size ε > 0 is called a list of the form

κ = (ε, id, |bin〉, |bfin〉, tin, tfin), (117)

where |bin〉, |bfin〉 are two di�erent basis states of the system, id is a unique identi�cation
number that distinguishes this quantum from all others, tin, tfin ∈ T . Transition of the
form |bin〉 → |bfin〉 is called a state transition, tin → tfin is called a type transition. Let's
choose the identi�cation numbers so that if they match, all the other attributes of the
quantum also match, that is, the identi�cation number uniquely determines the quantum
of the amplitude. In this case, there must be an in�nite number of quanta with any set
of attributes, except for the identi�cation number. Thus, we will identify the quantum of
the amplitude with its identi�cation number, without specifying this in the future. Let's
introduce the notation:

tin(κ) = tin, tfin(κ) = tfin, sin(κ) = bin, sfin(κ) = bfin.

The transitions of states and types of amplitude quanta actually indicate how a given
state should change over time, and their choice depends on the choice of A; the size of
the amplitude quantum indicates the accuracy of a discrete approximation of the action
of this operator using amplitude quanta.

The set of θ quanta of the amplitude of the size ε is called the quantization of the
amplitude of this size, if the following condition is met:

Q. In the set θ, there are no such quanta of the amplitude κ1 and κ2 that their state
transitions are the same, tin(κ1) = tin(κ2) and tfin(κ1) = −tfin(κ2), and there are no such
quanta of amplitude κ1 and κ2 that sin(κ1) = sin(κ2) and tin(κ1) = −tin(κ2).

The condition Q means that during the transition described by the symbol "→", the
total value of the amplitude quantum cannot contract with the total value of a similar
amplitude quantum, and also that the amplitude quanta do not contract with each other
directly in the initial state record.

Quantization of the θ amplitude sets a pair of quantum states

|θin〉 =
∑
j

λj|j〉, |θfin〉 =
∑
i

µi|i〉, (118)
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according to the natural rule: for any basis states |j〉, |i〉, the equalities must be satis�ed

λj = 〈j|θin〉 = ε
∑

κ∈θ: sin(κ)=j

tin(κ), µi = 〈i|θfin〉 = ε̃
∑

κ∈θ: sfin(κ)=i

tfin(κ), (119)

where ε̃ is some normalization coe�cient, so that the state |θfin〉 has a unit norm, and
|θin〉 has an arbitrary nonzero one. The coe�cient ε̃ does not have to coincide with ε,
because when quantizing the amplitude, the usual norm of the state vector, in general, is
not preserved; if we took ε̃ = ε, then the value {|Ψ〉} could only decrease at the transition
|θin〉 → |θfin〉; this is exactly due to the fact that some quanta of the amplitude "contract"
with each other in the second sum from the formula (119).

Let's �x the dimension dim(H) of the state space, and we will make estimates (from
above) of the considered positive quantities: the time and the size of the amplitude
quantum up to an order of magnitude, considering all constants to depend only on the
independent constants: dim(H) and from the minimum and maximum absolute values of
the elements of the matrix A. At the same time, the term �strict order� will mean the
evaluation of both the top and bottom positive numbers that depend only on independent
constants.

Given the quantization of amplitude θ and the numbers i, j of the basis states we
will denote by ni,j(θ) the number of elements of the set Ni,j(θ) = {κ ∈ θ : sin(κ) =
j, sfin(κ) = i}.

Let θ(ε) be some function that maps some sequence of positive numbers - values of ε
converging to zero, into quantizations of the amplitude of the size ε. This function will
be called parametric quantization of the amplitude.

The parametric quantization of the amplitude θ(ε) is called consistent with the oper-
ator A and state |Ψ〉 if for some scalar functions c(ε)

θin(ε)→ |Ψ〉, c(ε)θfin(ε)→ A|Ψ〉 (ε→ 0). (120)

If A is the evolution operator Ut, then having a parametric quantization of the ampli-
tudes θ(ε) consistent with A is a completely non-trivial property of the quantum states
|θin(ε)〉, which says that it is possible to introduce a hidden parameter corresponding
to the dynamics set by the evolution matrix Ut, and making the quantum evolution Ut
deterministic. Such a parameter is the quantum of the amplitude κ ∈ θ(ε), where the
accuracy of the deterministic description is determined by the value ε.

The amplitude quantization theorem.

Let A be an arbitrary matrix. For every equilibrium state |Ψ〉 with respect to A, there
exists a parametric quantization of the amplitudes θ(ε), consistent with the operator A.

Proof.

Let we be given the equilibrium state with respect to A of the form |Ψ〉 =
∑
j

λj|j〉

and the number ε > 0. For |j〉 with nonzero λj 6= 0 let

λj = 〈j|Ψ〉 ≈ signre(ε+ ε+ . . .+ ε︸ ︷︷ ︸
Mj

) + signimi(ε+ ε+ . . .+ ε︸ ︷︷ ︸
Nj

), (121)
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where signreεMj + signimiεNj ≈ λj is the best approximation of the amplitude of λj
with the accuracy of ε; Mj, Nj are natural numbers, signre (im) = ±1. Thus, the �rst
convergence relation from (120) will be satis�ed, and the second relation must be satis�ed
if the parametric quantization is consistent with the Hamiltonian.

Let us approximate each element of the evolution matrix in the same way as we
approximate the amplitudes of the initial state:

〈i|A|j〉 ≈ ±(ε+ ε+ ...+ ε︸ ︷︷ ︸
Ri,j

)± i(ε+ ε+ ...+ ε︸ ︷︷ ︸
Ii,j

), (122)

where Ri,j, Ii,j are natural numbers; the real and imaginary parts are exactly ε each,
and the signs before the real and imaginary parts are chosen based on the fact that this
approximation should be as accurate as possible for the selected ε.

The amplitudes of the resulting state A|Ψ〉 are obtained by multiplying all possible
expressions (121) by all possible expressions (122):

λj〈i|A|j〉 ≈ (signreMjε+ i signimNjε)(±Ri,jε± i Ii,jε). (123)

We will expand the brackets in the right part of the expression (123), but we will
not make abbreviations. Each occurrence of the expression ε2 in the amplitudes of the
resulting state after opening the brackets in the right part of (123) will be obtained by
multiplying a certain occurrence of ε in the right part of (121) by a certain occurrence
of ε in the right part of (122). The problem is that the same occurrence of ε in (121)
corresponds to not one, but several occurrences of ε2 in the result, and therefore we can
not match the amplitude quanta directly to the occurrences of ε in (121).

How many occurrences of ε2 in the amplitudes of the state A|Ψ〉 from the result of
opening the brackets in (123) correspond to one occurrence of ε in the approximation
of the amplitude λj = 〈j|Ψ〉 of the state |Ψ〉? This number - the multiplicity of the
given occurrence of ε - is equal to

∑
i

(Ri,j + Ii,j). These numbers can be di�erent for an

arbitrary operator A and the state |Ψ〉. However, since |Ψ〉 is equilibrium with respect to
A,
∑
i

(Ri,j + Ii,j) will be the same for di�erent j.

We introduce the notation ν =
∑
i

(Ri,j + Ii,j) - this is the number of occurrences of ε

in any column from the expansion of the matrix (122); this number ν has the order 1/ε
at ε→ 0.

Denote by Zi,j the set of occurrences of the letter ε in the right part of the expression
(122), and let Zj =

⋃
i Zi,j. Then the number of elements in the set Zj will be equal to ν.

Consider the smaller value of the amplitude quantum: ε = ε/ν. We substitute in
the expression (121) instead of each occurrence of ε its formal decomposition of the form

ε =

ν︷ ︸︸ ︷
ε+ ε+ . . .+ ε, obtaining the decomposition of the amplitudes of the initial state into

smaller numbers:
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λj = 〈j|Ψ〉 ≈ signre(

ν︷ ︸︸ ︷
ε+ ε+ . . .+ ε+

ν︷ ︸︸ ︷
ε+ ε+ . . .+ ε+ . . .+

ν︷ ︸︸ ︷
ε+ ε+ . . .+ ε︸ ︷︷ ︸

Mj

)+

signimi(

ν︷ ︸︸ ︷
ε+ ε+ . . .+ ε+

ν︷ ︸︸ ︷
ε+ ε+ . . .+ ε+ . . .+

ν︷ ︸︸ ︷
ε+ ε+ . . .+ ε︸ ︷︷ ︸

Nj

).

(124)

LetW j
1 ,W

j
2 , ...,W

j
Mj+Nj

be the sets of occurrences of the letter ε in the right part of the

expression (124), marked with upper curly brackets. In each of these sets of ν elements,
as in the previously de�ned sets of Zj. Therefore, we can construct for each such set
W j
s a one-to-one mapping of the form ξ : W j

s → Zj. For each occurrence of ε in (121),
its descendants are naturally de�ned - the occurrences of ε in (124); the total number of
descendants for each occurrence will be ν.

We de�ne the quantization of the amplitudes θ = θ(ε) so that the id of the amplitude
quanta κ ∈ θ will simply be the occurrences of ε in the expansions of (124) for all j.
De�ne, as required in (117), the initial state and initial type of this quantum as the state
and type of this occurrence. It remains to determine the transitions of states and types.
This de�nition is given in the following natural way.

Each pair of the form (wjs, ξ(w
j
s)), where w

j
s ∈ W j

s , will correspond to the transition
of states and the transition of types in a natural way. Namely, the state transition will
have the form j → i for such i that ξ(wjs) ∈ Zi,j; the transition of the types tin → tfin
is de�ned so that tin is the type of occurrence3 wjs, and the type tfin is the product of
the occurrence type tin by the occurrence type ξ(wjs). The sets W j

s do not intersect at
di�erent pairs j, s, so we consider all occurrences of the letter ε in the right part of(124)
to be the domain of the function de�nition ξ (see Fig. 58).

Now let the transition of states and types for a given quantum κ ∈ θ correspond to
the mapping ξ in the sense de�ned above. The condition Q will be met, since there are
no reducing terms in the expression for the matrix element (122). So we de�ned the
quantization of the amplitude.

Due to our de�nition of the function ξ, the distribution of amplitudes in the state |θΨ〉
will be approximately proportional to the distribution of amplitudes in the state A|Ψ〉,
and the accuracy will increase inde�nitely with the decrease of ε to zero. In order to
determine the value of the function c(ε) necessary for consistency of θ with the operator
A, we calculate the contribution of each occurrence of ε2 to the right side of the equality
(123) and compare it with the contribution of the corresponding letter ε to |θΨ〉.

Let's �x any transition of the types tin → tfin and the transition of the states
sin → sfin. We will call the occurrence of ε2 in the result of opening brackets in (123)
corresponding to these transitions if j = sin, i = sfin, and this occurrence is obtained
by multiplying the occurrence of ε of type tin in the �rst factor of the right side of (123)
by the occurrence of ε in the second factor of type t′, so that tint

′ = tfin. For each such
occurrence, ε2 corresponds to exactly one quantum of the amplitude of the size ε from
the quantization of the amplitude de�ned above via the function ξ, which has the same

3The type of occurrence is determined naturally after opening the parentheses, for example, for the
occurrence of ...− iε... the type is −i.
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Figure 58: A. Multiplying the state vector by the matrix. The contribution of each
occurrence of ε is multiplied by ε. B. θ- initial state shift. The size of the ε amplitude
quantum is of the order of ε2.

transitions of states and types: this quantum corresponds to the occurrence of ε, which
is translated by a one-to-one mapping ξ to this occurrence ε2 (see Fig. 59).

So, the occurrences of ε2 in (123) are in one-to-one correspondence with the occurrences
of ε in (124) and we obtain c(ε) = εν.

Note that if A = 0, you can take c(ε) = 0 and any quantization of the amplitude will
be suitable.

The theorem is proved.

Note that if we abandon the conditionQ and the condition of the equilibrium state |Ψ〉
with respect to A, we can also de�ne matrix determinism, only we need to introduce the
reducing terms ε− ε into the matrix elements; then the formal entries of the amplitudes
for all columns of A will contain the same number of terms, and the reasoning will be
valid, but interference will now occur not only between the descendants of di�erent base
states, as for equilibrium states. |Ψ〉, and also between descendants of the same state.

Note also that a quantum computation in which only gates of the form CNOT and
Hadamard are used has the property that for any gate the number of elements in all Zj
will be the same, so that for such calculations determinism is provided with interference
only between images of di�erent basis states. This is, in particular, the Grover GSA
algorithm.

Moreover, for promising implementations of quantum gates on photons (see, for ex-
ample, [38]), the states resulting from the implementation of gates are connected, so that
interference in the course of such quantum calculations also has the property noted above.
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Figure 59: Determinism of trajectories when multiplying the state vector |Ψ〉 by the
matrix A. Each quantum of the ampitude passes into a certain quantum of the amplitude
of the resulting state, there are no branches.

10.9 Conclusion

We have argued for limiting the standard matrix formalism of quantum theory in the
�eld of complex systems, as an upper bound on the possible number of qubits that can
have an irreducible entangled state. This approach does not contradict any experiments
with multi-bit systems, but allows you to build models of such systems on existing su-
percomputers. This restriction also applies to the equivalence of bases in the state space,
and implies the existence of a minimum nonzero amplitude in the superposition. The size
of this quantum of amplitude can be approximately found in experiments on the imple-
mentation of Grover's algorithm. The quantization of the amplitude makes it possible
to introduce some type of determinism into quantum theory, which is not reduced to a
quasi-classical approximation.

11 Lecture 10. Quantum nonlocality, Bell inequality

and distributed quantum computing

The scheme of the experiment proving the presence of quantum instantaneous action at
a distance was proposed by J. Bell in the early 60s ([44],[45]); the experiments themselves
were conducted for the �rst time in the 1980s by A. Aspec and A. Zeilinger ([46], [47], as
well as references in [48] and [49]). In these experiments, the entanglement is manifested
not at extreme distances, as in a hydrogen molecule, but at distances of several hundred
kilometers.

In the experiment, states of the form |Ψ〉 = 1√
2
|00〉+ 1√

2
|11〉 are obtained for photons

that are detected at distances of several hundred kilometers between them. Let's imagine
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that the �rst photon is detected by the observer Alice, and the second one is detected by
Bob. The experimental conditions are such that Alice has two possibilities to choose a
detector, that is, a measurement basis in the state space of her qubit, and Bob also has
two possibilities.

Namely, Alice can choose the eigenvectors of the Hermitian operator σx or σz, and
Bob: (σx + σz)/

√
2 or (σx− σz)/

√
2, respectively. Since all the listed operators have only

1 or −1 eigenvalues, we will assume that Alice got the value X or Y , and Bob got a
or b, respectively, in the above order. For example, we can assume that 1 means that a
photon with horizontal polarization is detected, and −1 - with vertical (relative to the
corresponding position of the detector). This is equivalent to each participant of the
experiment choosing observable from two possibilities, for each-with a probability of 1/2.

We de�ne the random variable ξ as the product of the measurement results of Alice
and Bob, taken with a minus sign, in the case when the detector selections were Y and b,
respectively, and the product of the results with a plus sign in all other cases. The value
of such a value is obtained by simply multiplying and changing the sign accordingly, after
Alice and Bob have found out which orientation of the detectors each of them has chosen;
during the measurement itself, they do not agree on their choice.

Alice and Bob get one by one pairs of biphotons in the state 1√
2
(|00〉+|11〉) and perform

their tests with randomly selected observables, drawing up a protocol of experiments.
Then they come together and calculate the value of the random variable xi, which
is equal to the product of the values of the observed Alice and Bob, if their choice of
detectors was: Y, a or X, b or Y, a, and the product of these values with the opposite sign,
if the choice was Y, b.

At a super�cial glance, it may seem that X, Y, a, b are random variables that can be
operated on as with ordinary numbers. Let's temporarily accept this point of view, and
conduct some simple calculation of the mathematical expectation E of the value ξ. We
will take X and Y out of brackets in the expression

E = Xa+Xb+ Y a− Y b, (125)

which will be obtained if we add up all the possible results of calculations ξ. Then it
turns out that in one bracket there is 0, and in the other there is a number modulo 2.
Then we can estimate E as |E| = 2/4 = 1/2, since all four choices of detector orientations
are equally probable. Naturally, for random variables X, Y, a, b, we will have exactly the
same inequality, and it does not matter whether they are dependent or not. So, for the
mathematical expectation M(ξ) values ξ we get the inequality

M(ξ) ≤ 1/2, (126)

which is called Bell inequality.

And now let's calculate M(ξ) for the observables we have written out using the quan-
tum mechanical rule 〈A〉Ψ = tr(ρΨA) de�nitions of the average value (eigenvalues) of the
Hermitian operator A in the state Ψ. It follows from the de�nition of the mathematical
expectation for the eigenvalues of the Hermitian operator A: 〈A〉 = 〈Ψ|A|Ψ〉. The lis-
tener is asked to a) prove that the mathematical expectation of the observed A in the
state | Psi〉 is calculated using this formula, and b) the formula given in the text, based
on this.
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Simple calculation (It is necessary to consider all the cases of the orientation of the
detectors, and for each to make a reduced density matrix of our state, and then apply the
full probability rule) will show that M(ξ) = 1

4
2
√

2 (the 1/4 multiplier occurs everywhere
due to the equal probability of choosing all 4 combinations of detectors). This is exactly
what is detected in the experiment, which we will return to later. What is the matter?
Where did we make a mistake in reasoning? Obviously, there is only one possibility to
make it: the assumption that the results of Alice and Bob's measurements are expressed
as random variables X, Y, a, b was not strictly used by us, due to the fact that we did
not apply the de�nition of a random variable. Now we will �ll this gap, and see how this
will lead us to a new understanding of the meaning of the experiment with two entangled
photons.

Let's consider the experiment more strictly. To do this, we recall the basic concepts
of the Kolmogorov probability theory. It includes 3 objects: probability space, random
variables, and their numerical characteristics. First, we de�ne the central concept: the
set of elementary outcomes. This is (we always have a �nite) set

Ω = {ω1, ω2, . . . , ωk},

each element of which re�ects the entire essence of the world, which plays a role for the
experiment under consideration. This means that by selecting any element ωj ∈ Ω, we
automatically select the outcome of any experiment from the set under consideration,
including the position of the detector, the state of all elementary particles in it, as well as
all parameters that we don't even know, but which determine what the outcome of the
experiment will be. The fact that we do not know the structure of Ω does not play any
role. We should still consider this object explicitly if we are talking about probabilities.

Due to the in�exible form of the "ban on hidden parameters" in Copenhagen quantum
mechanics, we cannot even consider the approximation of the Ω set within its framework.
Thus, an accurate consideration of quantum mechanical problems for many particles must
go beyond the limits of the Copenhagen quantum theory. Going beyond the limits does
not mean breaking laws, but considering entities that are not available in the Copenhagen
theory.

You can put it di�erently. Standard problems of quantum theory involving the use of
the apparatus of wave functions and projections should not use hidden parameters, that
is, they should not concern the probabilistic structure of the wave function. The standard
ones include problems about the behavior of a single quantum particle or reduced to them.

However, our problem about entangled photons is not standard, since it already con-
cerns two particles. Although the entangled state of two particles can in some sense be
reduced to a single-particle one, but the observation operators used by Alice and Bob
are signi�cantly di�erent, and therefore we are dealing with a substantially non-single-
particle quantum state. Sometimes the arsenal of Copenhagen theory is enough to solve
such problems, but our case clearly does not belong to this category, and therefore we
must use probability theory to �nd a solution, considering the set of elementary outcomes
Ω. The limitation of the standard formalism here is that we must consider this set to be
�nite; although in this case this will not a�ect the conclusions in any way.

On the set S of all subsets of Ω is necessary to de�ne the so-called likelihood function of
the form P : S −→ [0, 1] that satis�es the axioms of probability: P (A∪B) = P (A)+P (B)
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for disjoint A,B ∈ S, P (∅) = 0, P (Ω) = 1. De�ne P is very simple: P (A) is the quotient of
the number of all elements of A on l. This is sometimes called the frequency determination
of probability.

A random variable is any function of the form

ξ : Ω −→ R.

We can calculate the mathematical expectation of a random variable ξ using the
standard formula M(ξ) =

∑
x∈R

xP ({ω ∈ Ω | ξ(ω) = x}).

It should be said at once that it is pointless to look for "explanations" of the experiment
with biophotons without resorting to the strict de�nition of probability given above. The
only mathematically accurate formulation of the concept of "probability" follows from
the above de�nition. Now let's look at how this arsenal is applied to the situation under
consideration.

From the point of view of quantum mechanics, the state |Ψ〉 of the two photons under
consideration represents a single vector in the Hilbert space of states. This means that
there is such a space of elementary outcomes Ω that all the quantitiesX, Y, a, b are random
variables over this space, that is, functions of elementary outcomes: X(ω), Y (ω), a(ω), b(ω).

Now we must reformulate the experimental conditions in the language of probability
theory. We have the following situation. Alice and Bob, independently of each other and
completely randomly, each choose any one state of the detector from the two possibilities
available to it, immediately after which each photodetector detects a photon that has
fallen into it (a speci�c measurement result is 1 if the state |ε1〉 is obtained from the basis
of the eigenvectors of the operator of the observed, and −1 - if |ε2〉, the choice of these
alternatives is based on the characteristics of the detector).

This means that Alice's choice of detector orientation is included in some object ω1,
and Bob's choice of detector orientation is included in the object ω2, so that the elementary
random outcome of one experiment ω ∈ Ω has the form (ω1, ω2). If the photons have any
hidden parameters, then we consider the parameters of the photon that arrived to Alice
to be included in ω1, and for the photon that arrived to Bob - in ω2. Thus, we must
assume that Ω = Ω1 × Ω2, where the sets Ω1 and Ω2 correspond to the choices of Alice
and Bob, respectively.

This assumption expresses the so-called freedom of will in both participants of the ex-
periment. The absence of free will would simply mean that the choice of, say, Alice, would
automatically determine Bob's choice. In real experiments, the question of orientation
is solved not by people, but by electronics, based on such events that, from the point of
view of common sense, must be independent (for example, streams of extraneous photons
from di�erent regions of outer space). The free will of the participants in the experiment
is a necessary assumption if we are engaged in science.

Now consider that there are random variables X, Y, a, b. Since ω1 automatically de-
termines the orientation of Alice's detector, we denote by ΩX

1 such a subset of Ω1 that
corresponds to the orientation of the detector X, and similarly we denote the subsets
corresponding to Y, a, b. In this case, Ω1 will be the sum of disjoint subsets of ΩX

1 and
ΩY

1 , and Ω2 will be the sum of also disjoint Ωa
2 and Ωb

2.
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We must assume that the result of Alice's detection is a random variable ξ1(ω1, ω2),
and the result of Bob's detection is a random variable ξ2(ω1, ω2), so that the overall result
is the Cartesian product ξ = (ξ1, ξ2), and X is the restriction of the function ξ(ω1, ω2)
on the domain ω1 ∈ ΩX

1 , Y there is a restriction of the function ξ(ω1, ω2) on the domain
ω1 ∈ ΩY

1 , a there is a restriction of the function ξ on the domain ω2 ∈ Ωa
2, and b - on

the domain ω2 ∈ Ωb
2. In order to make the values X, Y, a, b de�ned on the entire set of

elementary outcomes Omega, we will add them to zero in those areas where they are not
explicitly de�ned by us.

Let's de�ne the random variable ξ as follows:

ξ(ω1, ω2) =

{
ξ1(ω1, ω2)ξ2(ω1, ω2), åñëè ω1 /∈ ΩY

1 èëè ω2 /∈ Ωb
2,

−ξ1(ω1, ω2)ξ2(ω1, ω2), åñëè ω1 ∈ ΩY
1 è ω2 ∈ Ωb

2.

We then have: ξ = Xa+Xb+ Y a− Y b.

Let's calculate its expectation by the given de�nition, choosing the frequency de�nition
of probability. We will obtain

M(ξ) = 1
k

∑
ω1,ω2

X(ω1, ω2)a(ω1, ω2) +X(ω1, ω2)b(ω1, ω2)

+Y (ω1, ω2)a(ω1, ω2)− Y (ω1, ω2)b(ω1, ω2).

Note that we are using what many people call realism. This means that we have the
right to repeatedly use a limited number of letters ωj so that any combinations of them
will correspond to real experiments on detecting photons. In another way, this can be
formulated as freedom of will when choosing from a �nite set of reality options.

It is not di�cult to make sure that it is impossible to do with this expression for the
expectation as it was done above with numbers when proving the Bell inequality (126), due
to the presence of arguments for random variables. Indeed, since the result of measuring
one of the participants depends on the elementary outcomes for both of them, we would
have to write another expression instead of the expression (125): E = Xa+X ′b+Y a′−Y ′b′,
and we would not be able to put the common factors out of brackets, that is, our naive
reasoning would be incorrect.

However, let's assume that, in addition to the obvious realism for us, we also have a
so-called locality. In short, locality means that the result of Alice's measurement does not
depend in any way on the orientation of Bob's detector and vice versa. We will discuss
the physical meaning of locality below. Formally, locality means that X and Y depend
only on ω1, and a and b depend only on ω2. Then we can do the same trick with the
expression for the mathematical expectation as when proving Bell's inequality. Namely,
we will group all the terms of a large sum into groups of 4 types

X(ω1)a(ω′2) +X(ω1)b(ω2) + Y (ω′1)a(ω′2)− Y (ω′1)b(ω2),

consisting of non-zero terms, so that within each group it will be possible to take X and
Y out of brackets, and just as above to prove that this group does not exceed 2. Since
4 di�erent ω are involved in the group, we get that the mathematical expectation of ξ
does not exceed 1/2. That is, locality leads to the ful�llment of Bell's inequality. Thus,
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we came to the conclusion that the nonlocality of quantum mechanics follows from the
experiment on detecting biphotons.

Now let's look at the nonlocality in more detail. It means that the random variables
related to Bob depend not only on its component of the elementary outcome, but also on
the component belonging to Alice, and vice versa, that is, all the outcomes of X, Y, a, b
depend on both ω1 and ω2.

How can this be implemented? Just like this: there is some object ω̃ that travels
from Alice to Bob and back, carrying information about the other half of the elementary
outcome of the corresponding experiment. If this object ω̃ obeys the restriction of rela-
tivism, and cannot move faster than light, then we can deduce restrictions on the times
of emission of a biphoton by the source and the times of detection of the arrival of each
of the photons by Alice and Bob.

Let ∆t be the natural uncertainty of the moment of emission of a biphoton by the
source, about which we assume that all biphotons whose emission time lies outside this
range do not play any role for obtaining statistics in this experiment. The presence of such
an interval is a direct consequence of the energy-time uncertainty ratio. Now we assume
that the clocks of Alice, Bob, and the source of the biphoton are exactly synchronized,
and we enter the value δt equal to the di�erence between the moment of triggering the
detector and the moment of choosing its position (that is, the choice between X and Y
and between a and b). Then, if the material object ω̃, which carries information about
the other half of the elementary outcome, obeys relativism, then the following inequality
must be satis�ed

∆t+ δt ≥ d/c, (127)

where d is the distance between Alice or Bob, and the source of biphotons, c is the speed
of light.

Experiments show that this inequality is violated for biphotons detected at distances of
several hundred kilometers, which has absolutely fundamental consequences for quantum
theory. Indeed, the violation (127) says that ω̃ it cannot be a hidden parameter of any
of the photons. In real experiments, as a rule, they do not check the violation (127), but
directly prevent the reverse transfer of information by the photons themselves, exposing
the stubs after their passage.

That is, ω̃ directly transfers information about the orientation of the detectors from
Alice to Baba or vice versa. This e�ect is commonly called "quantum nonlocality"; it
directly follows from the standard quantum formalism, but in fact, it makes it necessary
to move from the narrow Copenhagen framework to a post-quantum theory, in which the
random outcomes of ω should have a real meaning, and not serve only a formal goal -
mathematical consistency. You can get acquainted with various points of view on quantum
nonlocality, for example, by reading articles from [50].

Quantum theory is fully consistent with the principle of relativism, according to which
no information can move at a speed exceeding the speed of light. Formally, this is ex-
pressed in the fact that the statistics of Alice's measurements does not depend in any
way on whether Bob changes his qubit or not. That is, with the help of an entangled
quantum state, it is impossible to transfer the information generated by the participants
of the experiment to each other. But we have just found out that this restriction does not
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apply to information about elementary outcomes in speci�c experiments about measuring
quantum states when they are put together!

There is only one conclusion to be drawn from this. There is a kind of administrative
system, the interaction with which determines the reality. This interaction exactly corre-
sponds to the user's interaction with the computer. The user, that is, the experimenter,
determines the conditions (the position of the detectors), after which the administrative
system working with elementary outcomes outputs the result of the experiment. At the
same time, the time spent by the administrative system to coordinate the conditions set
by various users is not real physical time.

We are using programming terminology here, in which the administrative system
means a very speci�c thing that should be included in the post-quantum formalism, and
therefore should not cause any other associations. The non-locality of the elementary out-
comes of omega suggests that these outcomes can �nd real meaning precisely for complex
systems and processes a�ecting large spatial regions. For simple systems, for example, for
a single atom or even a molecule, non-locality itself does not play a big role: it manifests
itself in a rather subtle experiment described by us, and its e�ect for simple systems is
even less than relativistic corrections.

However, quantum long-range operation allows you to create amazing information
exchange protocols, one of which we will consider below.

11.1 An example of quantum superiority in distributed comput-

ing with one-way control

The construction of a quantum computer is a complex and multifaceted process, and
an important role in it is played by limited models of quantum computing, for example,
quantum branching programs ([51]) or biochemistry modeling programs ([52].) The ad-
vantage of quantum methods may not be in speeding up calculations in the usual sense,
but in using individual elements of quantum nature to obtain the �nal gain as the result
obtained.

Here we demonstrate how breaking the Bell inequality can help improve the e�ciency
of some distributed computing. The example that we will give is arti�cially constructed
and is intended only to illustrate the possibility of practical use of the amazing property
of quantum nonlocality; moreover, the e�ect of this use is not too great. However, this
example has similarities with the biological process of growth of complex molecules with
a linear organization of the primary structure, and therefore it suggests that the search
for further applications of quantum nonlocality can be fruitful.

11.2 One-way control

We show how this goal can be achieved using a violation of Bell's inequality. Let's
consider a model of distributed computing with one-way control, where all computing
devices are divided into a central processor (CPU) and remote peripheral devices that
can directly receive commands from the CPU. The reverse transfer of information from
peripheral devices to the central processor does not occur directly, but only in the form of
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Figure 60: One-way control scheme

Figure 61: Distributed synthesis of chains
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a sequential transfer through a chain of peripheral devices that locally interact with each
other, as shown in the �gure 60.

In the example that we will analyze, the use of entangled photon states in the control
gives an increase in the quality of the calculation result, exceeding the result of classical
control by about 1.138 times. This is the task of synthesizing two remote chains consisting
of separate links, carried out on two peripheral devices.

The central processor sends a signal to two peripheral processors, each of which is
responsible for the corresponding subsystem of the entire system. For example, the CPU
solves the problem of synthesis on one subsystem of a certain polymer A, which has a
special activity, and, at the same time, the problem of synthesis of another polymer B,
which suppresses (or, conversely, intensi�es) this activity, already on another subsystem.
The CPU sends the corresponding signal to both subsystems, and switches to other tasks,
for example, to synthesize another pair of polymers A′ and B′.

What would happen if the peripheral processors began to send signals to each other
directly? Let's say we havem subsystems, each of which is controlled by its own processor.
For the correct addressing of signals between all possible pairs (of the order of m2), we
would have to load the CPU with this work. The CPU would have to wait for the time
cD for each pair, where D is the distance between the peripheral processors, c is the speed
of light, before switching to the next task.

Åifm is large enough (in real bio-systems, this number is very large), such a calculation
scheme based on addressing signals through the CPU would lead to a fatal control delay,
which would make the entire scheme unusable.

Thus, we come to the need for one-way control, when the CPU sends signals to pe-
ripheral processors immediately, without waiting for a response from them. The feedback
information is sent to the CPU not directly, but through a chain of intermediaries, as in
a cellular automaton. This form of information processing organization can be e�ective
in living organisms, since in them the central nervous system, which plays the role of the
CPU, should be free from routine work on managing metabolism.

11.3 Quantum bi-photonic signals

In this situation, the use of CPU biphotons (entangled states of photons) gives an
advantage compared to a purely classical CPU. To demonstrate this, we will consider the
following abstract problem. Suppose you want to synthesize two polymer molecules, the
chemical structure of which has the form C1 = (c1

1, c
1
2, ..., c

1
M), C2 = (c2

1, c
2
2, ..., c

2
M), so,

what they consist of monoblocks two types a and b: cji ∈ {a, b} (see Figure 62).

The quality of such a mutual assembly of two polymers is checked by superimposing
�nished chains on each other: the �rst C1 on the second C2, and the quality criterion is the
degree of gluing of these chains. Each monoblock has an external (convex) and internal
(concave) surface, where the latter is equipped with a special ball located in its center.
In a �xed position, two monoblocks can stick together in one of the following cases: 1)
their surfaces or half of the surfaces are completely aligned by vertical displacement, or
2) their central balls are at the same point with such a shift, as shown in the �gure 62.
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The physical structure of the polymer, on which the gluing depends, is determined not
only by the sequence of monoblocks in the chain; the gluing also depends on an additional
option: their exact location relative to each other in the chain. Neighboring monoblocks
in the polymer are connected by a �exible bond, which can either give up by dx, which is
a quarter of the length of the monoblock, or stretch to the same length. In these cases,
we will say that the monoblock is shifted backward or forward, respectively, relative to
the equilibrium position of the connection.

During the synthesis, monoblocks are installed with these restrictions and their posi-
tions are �xed. Then the two chains are superimposed on each other and for each pair of
overlapping monoblocks, the presence of gluing is established. It follows from the accepted
restriction that if in such a pair of overlapping monoblocks they were shifted to one side,
they are glued together in the same way as if there were no shifts; and if in di�erent ones,
the resulting shift is half the length of the monoblock. After that, the number of glued
pairs of superimposed monoblocks is calculated and this number is considered a numerical
characteristic of the assembly quality of a pair of chains.

The synthesis of chains occurs as a sequential attachment of a new monoblock to each
of the existing chains - the one that �rst appeared at the assembly point of one and the
other chain. Monoblocks are taken from the environment surrounding the growth points,
where they are in chaotic motion and both types are distributed equally. In this case, you
can move the newly attached monoblock either backwards or forwards by a distance of
dx. We will denote the forward shift by +, the backward shift by −. Each j - th pair of
monoblocks in both chains, superimposed on each other after synthesis, thus correspond
to the four c1

jc
2
js

1
js

2
j , where the last two terms are shifts s1,2

j ∈ {+,−}.

It follows from our rules (see Figure 62) that the gluing corresponds to pairs of super-
imposed monoblocks of the form: aa + +(−−), ab + +(−−), bb + +(−−), ba + −(−+),
whereas pairs of a di�erent type: aa+−(−+), ab+−(−+), bb+−(−+), ab+ +(−−) do
not give gluing. Note the asymmetric behavior of monoblocks of the type a and b: pairs
of ab and ba are glued together in di�erent ways with the same engines. This asymmetry
looks like an asymmetry in the Bell inequality, which will give us an increase in the quality
of the resulting gluing with biphoton control compared to classical control.

We assume that the growth of the polymer C1 occurs at one point, and the growth of
C2 occurs at another, and these points are separated by a large distance (for example, they
occur in di�erent countries). The task is to organize this synthesis so that the number of
non-glued pairs of superimposed monoblocks is minimal, or, in other words, so that the
number of glues is maximum.

A similar problem may arise when modeling the synthesis of a gene and an antigen
in di�erent living cells. We can create an information channel for controlling them from
one center; however, with a large distance between the assembly points, such control can
slow down the assembly process itself, which is a separate problem for real polymers that
goes beyond our model.

We will show how to use biophoton control of the simultaneous synthesis process to
obtain quantum superiority.

So, to minimize critical (non-glued) pairs of monoblocks, we use CPU signals in the
form of EPR states |Ψ〉 = 1√

2
(|00〉+ |11〉), and calculate the number of critical pairs that
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Figure 62: The superposition of two polymers. The arrows indicate the direction of bond
stretching (red) between adjacent monoblocks during polymer synthesis. Overlays of the
form aa + +(−−), ab + +(−−), bb + +(−−), ba + −(−+) give gluing, other gluing does
not give. At the bottom, all pairs give glues.
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occur during such control. If the control were classical, in the notation from the previous
paragraph we would have Bell's inequality

E(a1b2 + b1b2 + a1a2 − b1a2) ≤ 2. (128)

Let's accept the following agreement. The subscript indicates the assembly point
(polymer number) 1 or 2. The letter a or b indicates the type of monoblock attached
to the chain, the sign corresponds to the direction of the shift of this monoblock, as we
agreed. The result of joining monoblocks at both assembly points is determined if, for
the lower index 1 and 2, we have, �rst, the letter a or b, and secondly, the shift sign +
or −. The letter a or b always determines the type of monoblock closest to the assembly
point at the moment.

The CPU operating on the principles of classical physics can thus control the assembly
only by choosing the shift sign + or − at both assembly points. The CPU selects these
signs simultaneously, so that no waiting for the signal to pass between the assembly points
can slow down the process: information about the sign appears at both points simultane-
ously, and just at the moment when it is needed. If we allowed a time delay, it would be
possible to make the assembly generally perfect, avoiding critical pairs altogether.

For the classical type of correlation between the choice of signs, we have Bell's in-
equality. For each step of the process, we keep the criticality index Cr = +1, if the
overlap of the corresponding monoblocks is not critical (there is a gluing), and Cr = −1
otherwise. We are interested in the resulting number of necrotic overlays along the entire
length of the chains of synthesized polymers: NonCr; our goal is to make this number
the maximum.

For one pair of monoblocks, we have NonCr = 1
2
(1 + Cr). Since all combinations of

aa, ab, ba, bb for both synthesis points have the same probabilities of 1/4, for the average
value of E(Cr) of the criticality index we have

E(Cr) =
1

4
(a1b2 + b1b2 + a1a2 − b1a2), (129)

where the letter a or b with an index denotes a random variable corresponding to the
choice of the type of monoblock with the sign ±1, depending on the shift sign chosen for
it.

For classical control due to Bell's inequality for E(Cr) of the form (129) the average
number of critical overlays satis�es the inequality

E(NonCr) ≤ 1

2
(1 +

2

4
) =

3

4
= 0.75.

In the case of quantum biphoton control, the situation will be di�erent. Here we
cannot consider a1 and b1 as random variables de�ned on separate sets of elementary
outcomes for a2, b2, that is, the evaluation of (128) will not follow from the obvious
expression a(X + Y ) + b(X − Y ) ≤ 2 for the numbers a, b,X, Y = ±1; here we should
write a1b2 + b1b

′
2 + a′1a2 − b′1a′2 instead of the left side of the inequality (128), which will

make this inequality incorrect.

For biphoton control, our random variables are de�ned on the same set of elementary
outcomes, we do not have Bell's inequality and must count the probabilities directly using
the Born rule.
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Let us assume that for each of the assembly points we have a photodetector that can
be instantly oriented in accordance with the observables that we associate with a and b.
For the �rst and second assembly points, let these observables have the form:

a1 = σx, b1 = σz,
a2 = 1√

2
(σx − σz), b2 = 1√

2
(σx + σz)

(130)

accordingly. Here we do not consider the interesting question of the practical implemen-
tation of such observables.

Let's assume that the type of the current monoblock determines the position of the
detector for both points and the shift sign of the monoblock is the value of the corre-
sponding observable. Since all combinations of monoblock types aa, ab, ba, bb are equally
probable, we can use the formula (129) for the average value of the criticality index.

Now we have: E = E(a1b2+b1b2+a1a2−b1a2) = E(a1b2)+E(b1b2)+E(a1a2)−E(b1a2).
Using the de�nition of observables (130) and applying the rule for calculating the averages
langleA〉ψ = tr(Aρψ) for all observables A taken from (130), we will �nd E = 2

√
2 and

for the average value of the number of non-critical overlays (glues) we will get the value

of E(NonCr) = 1
2
(1 + 2

√
2

4
) ≈ 0.85. So, the use of EPR pairs of photons in the assembly

control gives a signi�cant gain in quality - a little more than 1.138 for such a formulation
of the problem.
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